
www.eao.com

Series 09 – Rugged Keypad.
Operating instructions and safety instructions

Operating instructions

www.eao.com 10.08.2022 | Seite 2

Operating instructions and safety instructions

Project S09 Rugged Keypad

Document Number 1707900701

Document
Description

Operating and safety instructions for series 09 Rugged Keypads and
RCC with CAN Interface

EAO Automotive GmbH & Co. KG

Richard-Wagner-Straße 3

08209 Auerbach/Vogtl.

www.eao.com 10.08.2022 | Seite 3

Change History

Version
Valid
from
SW-
Version

Change Description Status Author Date

01 initial intial BEC 15.10.2019

02 CAN Open Safety added Update ESF 05.11.2019

04 Correction in Chapter 8.4 Update SCI 15.11.2019

05 CAN communications extended Update GOM 05.02.2020

06 4.05.001

Document number corrected
Chapter 8.2 updated
Chapter 11.2 updated
Review ESF, column for SW-Version in
Change History added

 Update SCI 25.02.2020

07

4.05.001 Chapter 11.1.2
- Output current Wakeup Out changed
- circuit diagrams for wakeup added
- example messages J1939 fixed

Update SCI/GOM 03.03.2020

08 4.05.001 - Chapter 0 added Update GOM 06.03.2020

09 6.03.000
- Chapter 7.4 use inside closed vehicles
- Chapter 14 Cleaning updated

Update ESF 18.01.2021

10 6.04.000

- Chapter 9.6 (Error handling) added
- Chapter 13 (RCC) added
- RCC application note (proportional-digital)
 added
- Structure of lighting objects and
 interaction of objects explained
- Differences between SW-Version
 4.05.001 and 6.03.000 explained
- Application Note for manually change the
 Baudrate, node-ID and stuck button time
 added

 Update MAR 02.06.2021

www.eao.com 10.08.2022 | Seite 4

Referenced Dokuments
Reference Version Author Date
K-Matrix J1939 20 HEP 04.02.2021
K-Matrix CANopen/CANopen-Safety 20 HEP 04.02.2021
 1707 product information 02 EBJ 12.05.2021
CiA CANopen® application layer and general
communication profile „CAN poster“]

CiA 301 “CANopen application and communication
profile” 4.2.0 21.02.2011

CiA 320 “Services and protocols for sleep and wake-up
handling” 1.0.0 14.03.2018

SAE J1939-73: Application Layer - Diagnostics 05.2017
SAE J1939-21: Data Link Layer 03.2016
SAE J1939-81: Network Management 03.2017

Series 09, Rugged CAN Keypads - CE-Certification -
Compliancy of EAO Products - HDI July,15, 2021

www.eao.com 10.08.2022 | Seite 5

Table of contents
1. Safety warnings .. 12

 Intended use .. 12

2. Proper environment .. 13

3. General description .. 13

4. Technical specification ... 15

5. Scope of delivery .. 16

6. Storage .. 16

7. Mechanical installation/mounting .. 17

 Installation in a panel by means of retaining clamps (retaining clamp version) ... 17

 Installation in a panel with self-locking nuts (screw-in version) 18

7.2.1 Mounting sequence .. 18

 Installation of the symbol inserts .. 19

 Use inside closed vehicles ... 20

8. Electrical installation and interface operation .. 21

 Electrical installation ... 21

8.1.1 Pinning ... 21

 Booting and resetting behaviour ... 21

9. SAE J1939 communication protocol ... 23

 Composition of the CAN Identifier .. 23

 Keypad specific values ... 24

 Installation in a network .. 24

 Service Data – Proprietary A .. 25

9.4.1 Read Data object Request ... 25

9.4.2 Read data object reply OK ... 26

9.4.3 Read data object reply NOK ... 26

9.4.4 Write data object request ... 27

9.4.5 Write data object reply OK ... 28

9.4.6 Write data object reply NOK ... 28

 Process Data Proprietary A and B .. 29

9.5.1 Process Data Proprietary A – Rx configuration messages 29

9.5.2 Process Data Proprietary B – Tx process data ... 29

 Diagnostics .. 30

9.6.1 Current Module Temperature ... 30

9.6.2 Current voltage... 31

9.6.3 Error handling .. 31

9.6.3.1 Active diagnostic trouble codes (DM1) ...31

www.eao.com 10.08.2022 | Seite 6

9.6.3.2 Previously active diagnostic trouble codes (DM2) ..33

9.6.3.3 Diagnostic data clear/reset of previously active DTCs (DM3)35

 Save settings to Volatile/Non-Volatile memory ... 35

 Custom Layer Settings ... 36

9.8.1 Manually configure the Baudrate .. 36

9.8.2 Manually configure the Node-ID ... 37

 Basic Functions .. 37

9.9.1 Button press data ... 37

9.9.1.1 Stuck Button Time ..37

9.9.1.2 Reconfigure Stuck Button Time ..37

9.9.2 Symbol Illumination .. 38

9.9.2.1 Activating Symbol Illumination ..38

9.9.2.2 Choosing the active brightness setting for the symbol LEDs39

9.9.2.3 Changing the brightness setting for the symbol LEDs ..40

9.9.2.4 Changing the temporal patterns for the symbol LEDs (flash modes)40

9.9.2.5 Adjusting the timings in flash modes ..41

9.9.2.6 Changing the global brightness for the symbol LEDs ...41

9.9.3 Halo-Ring Illumination .. 42

9.9.3.1 Activating Halo lighting ...42

9.9.3.2 Choosing the active brightness setting for the halo LEDs43

9.9.3.3 Changing the brightness setting for the Halo LED illumination44

9.9.3.4 Choosing the temporal patterns for the Halo LED illumination45

9.9.3.5 Changing the global brightness for the Halo LED illumination46

9.9.3.6 Choosing the active colour setting for the Halo LED illumination46

9.9.3.7 Changing the colour setting for the Halo LED illumination47

9.9.3.8 Adjusting the timings in flash modes ..48

 Changes between Software version 04.05.001 and 06.03.000 or newer 49

10. CANopen communication protocol ... 50

 Composition of the CAN Identifier .. 50

 Standard communication parameters ... 50

 Installation in a CAN-network ... 50

 SDO communication .. 52

 PDO communication .. 53

10.5.1 PDO communication parameter ... 54

10.5.2 Mapping of PDOs ... 54

10.5.3 Automatic COB-ID update .. 56

 Diagnostics, Error Codes ... 57

www.eao.com 10.08.2022 | Seite 7

 Save settings to Volatile and Non-Volatile memory .. 58

 Custom Layer Settings ... 59

10.8.1 Manually configure the baud rate ... 59

10.8.2 Manually configure the Node-ID ... 60

 Basic functions ... 60

10.9.1 Pressed Key data ... 60

10.9.1.1 Stuck Button Time ..60

10.9.1.2 Reconfigure Stuck Button Time ..61

10.9.2 Symbol Illumination .. 61

10.9.2.1 Activating Symbol Illumination ..61

10.9.2.2 Choosing the active brightness setting for the symbol LED’s..............................62

10.9.2.3 Changing the brightness setting for the symbol LED’s ..62

10.9.2.4 Changing the temporal patterns for the symbol LED Illumination63

10.9.2.5 Changing the global brightness for the symbol LED Illumination63

10.9.3 Halo-Ring Illumination .. 63

10.9.3.1 Activating Halo Ring Illumination ..63

10.9.3.2 Choosing the active brightness setting for the Halo LED’s65

10.9.3.3 Changing the brightness setting for the Halo LED’s ...65

10.9.3.4 Choosing the temporal patterns for the Halo LED’s for flashing modes66

10.9.3.5 Changing the global brightness for the Halo LED’s ..66

10.9.3.6 Choosing the active colour setting for the Halo LED’s ..67

10.9.3.7 Changing the colour setting for the Halo LED’s ..67

10.9.3.8 Adjusting the timings in flash modes ..68

 Changes between Software version 04.05.001 and 06.03.000 or newer 69

11. Special functions .. 70

 Sleep/Wakeup, Power Saving .. 70

11.1.1 Sleep/Wakeup over CAN ... 70

11.1.2 Sleep/Wakeup over 2 wire hardware interface ... 70

11.1.3 Sleep/Wakeup summary .. 72

 Structure of lightning objects .. 72

11.2.1 Depending objects ... 73

11.2.2 Linking the objects ... 74

 Communication timeout .. 76

12. CANopen-Safety communication protocol .. 76

13. Rotary Cursor controller ... 76

 Communication Objects ... 77

 Working with the RCC .. 78

www.eao.com 10.08.2022 | Seite 8

14. Operation ... 78

 General information .. 78

15. Cleaning ... 79

16. Optional accessories .. 79

17. Liability for quality defects .. 79

18. Service, repair .. 80

19. Decommissioning, disposal .. 80

20. Declaration of Conformity ... 80

www.eao.com 10.08.2022 | Seite 9

List of abbreviations and units

CA Controller Application

CAN Controller Area Network

CiA CAN in Automation

CLS Custom Layer Setting

COB Communication Object

CS Command Specific

DLC Data Length Count

DM Diagnostic Message

EDS Electronic Data Sheet

EOL End Of Line

EU European Union

HB High Byte

HMI Human-Machine-Interface

IP International Protection

ISO International Organization for Standardization

kbps Kilo bit per second

LB Low Byte

LED Light emitting diode

LSB Least Significant Bit

mm milli meter

MOT Ministry of Transport

MSB Most Significant Bit

NMT Network Management

NVM Non Volatile Memory

PDO Process Data Object

PDU Payload Data Unit

PGN Parameter Group Number

www.eao.com 10.08.2022 | Seite 10

Prop A Proprietary A

Prop B Proprietary B

RCC Rotary Cursor Controller

RGB Red-Green-Blue

Rx Receive

SAE Society of Automotive Engineers

SDO Service Data Object

SPN Suspect Parameter Number

Tx Transmit

www.eao.com 10.08.2022 | Seite 11

Used symbols

Caution!

Indicates a hazardous situation which, if not avoided, may result in a
minor or moderate injury

Attention

Describes information on installation which, if ignored, can lead to
malfunctions

Note

Indicates a situation which, if not avoided, may result in property
damage

Indicates an executive activity

Indicates an application tip

www.eao.com 10.08.2022 | Seite 12

1. Safety warnings
The safe system handling requires knowledge of the operating instructions.

Caution!

Connect the power supply in accordance with the safety regulations
for electrical equipment.

̶ Risk of injury
̶ Damage to the keypad

Note

Avoid shocks and impacts to the keypad during installation

̶ Damage to or destruction of the keypad

The supply voltage must not exceed the specified limit.

̶ Damage to or destruction of the keypad

Protect the cable and the connector from damages

̶ Damage to or destruction of the keypad

Never kink the cable, do not bend the cable in tight radii. Dynamic
movement of the cable should be avoided as far as possible, as well as
chafing of the cable on system components.

̶ Damage to the cable or connector

 Intended use
The modules were developed for applications in vehicles with MOT approval within the EU and
for intelligent control with CAN bus integration. The robust, modular design with a protection
degree of up to IP6K7 and the possibility of customer-specific adaptations and the
arrangement of keypad symbols are facts that make the devices the best choice for harsh use
in heavy-duty and special vehicles.

The keypads may only be operated within the parameters specified in the technical data.

The keypads must be used in such a way that no persons are endangered or machines
damaged in the event of failure or malfunction.

Commissioning must be carried out by qualified personnel.

www.eao.com 10.08.2022 | Seite 13

2. Proper environment
See Technical specification.

Note

If possible, avoid abrupt changes in the operating temperature of the
keypad, cable and connector.

̶ Damage to the keypad, cable or connector

Caution!

Do not operate the keypad in:

̶ Potentially explosive atmospheres
̶ Applications where the keypad, cable and connector are completely or

partly submerged for extended periods of time
̶ Situations in which the keypad, cable and connector are subjected to

harsh external shocks and impacts
̶ Do not use for remaining in final customer installations due to

validation not completed
̶ Risk of injury
̶ Damage to the keypad, cable or connector

The design of the keyboard (keys can still be pressed) means that keys are
protected from freezing as long as the keys remain accessible and can be
pressed. This means that the keyboard can also be used in snow and ice.

3. General description
Series 09 Rugged Keypads offer high reliability: The modules are designed for an intelligent
control with CAN bus integration. The robust, modular design with protection degrees of up to
IP6K7 and the possibility of customer-specific adaptations and the arrangement of symbol
inserts predestine the devices for harsh use in heavy-duty and special vehicles. The modules
are as well designed for ECE certification.

High reliability and functional safety are indispensable for the control of safety-relevant
applications in vehicles and machines – whether in construction machinery, construction
vehicles, agricultural machinery or in various types of special and commercial vehicles. Harsh
environmental conditions and low back panel depth require a robust and compact product
design. In addition, the control and signalling devices must be precisely configurable both
mechanically and electronically for the respective application. The high-quality Rugged Keypad
meets these requirements with a cutting-edge system integration.

www.eao.com 10.08.2022 | Seite 14

Typical applications
Special vehicles such as fire engines, road sweepers, cleaning vehicles, dustcarts, snow
clearing vehicles and snow groomers. Heavy-duty vehicles such as construction and
agricultural vehicles

Advantages
̶ Individual 4-segment and RGB Halo Ring Illumination
̶ Intelligent HMIs with CAN bus integration
̶ Robust, ergonomic and innovative design with a protection degree of up to IP6K7

(mounted state front: IP6K7; back: IP20 without plugged connector). Protection degree
for assembled situation in responsibility of customer application.

̶ Interchangeable ISO 7000 symbols or customer-specific symbols

Robust and innovative design
The design of the Rugged Keypads is characterised by a robust and innovative construction.
The control and signalling devices, which are protected up to IP6K7, function reliably at an
operating temperature of – 40 °C to + 85 °C. The low back panel depth and robust clip-in or
screw-in mounting allow a flexible and easy installation, either vertically or horizontally. The
high-quality devices also offer an excellent haptic and, thanks to the bright RGB LED halo and
LED symbol illumination, are clearly visible in daylight and at night. An attractive and
configurable 4-segment halo button illumination is integrated as standard.

The customisable illumination provides the operator with excellent visual feedback and is
combined with a unique, contemporary design.

Durability
The series 09 CAN modules are produced in our automotive competence centre located in
Germany. This allows us to apply our many years of comprehensive experience as an original
equipment manufacturer (OEM) in the automotive industry to the heavy duty and special
vehicles markets. At the same time, this offers EAO customers high quality, durable products
and services. The development and production process is aligned and executed according to
automotive standards, including qualified suppliers. This requirement ensures EAO high
quality products and solutions.

CAN bus integration
Thanks to the CAN bus integration, the devices are integrated intelligently and easily into a
CAN system – as standard with a Deutsch DT series connector. The device controls its function
according to the CAN command.

Designed for E1 applications and CAN bus integration

The robust control units with flexible illumination are ideally suited for use in heavy duty and
special vehicle applications.

www.eao.com 10.08.2022 | Seite 15

4. Technical specification
Validation ongoing and not completed:

Mechanical characteristics
̶ Actuation force: 6,5 N
̶ Overload: 250 N
̶ Service life – Rugged Keypad: up to 1 million cycles of operation

Electrical characteristics
̶ Operating voltage range: 8-32 VDC

Illumination

̶ LED symbol illumination – colour: white LED
̶ LED halo ring illumination – colour: RGB

Symbols
̶ Symbols in accordance with ISO 7000
̶ Customer-specific symbols on request

Connections/interfaces
̶ CAN interface (ISO 11898)
̶ CAN protocols: CANopen (CiA 401), SAE J1939
̶ Baudrate: 250 (default), 500 kb/s (software configurable)

Ambient conditions (validation not yet completed)
̶ Operating temperature: -40 °C … +85 °C
̶ Storage temperature: -40 °C … +85 °C

Protection degree
IP6K7 protection (mounted state front: IP6K7; back: IP20 without plugged connector).
Protection degree for assembled situation in responsibility of customer application.

Attention
The protection degree of up to IP67 to be achieved depends on the front
panel and type of mounting and must be ensured by the customer.

www.eao.com 10.08.2022 | Seite 16

5. Scope of delivery
1 Rugged CAN keypad, with cable and connector (type Deutsch 6 pin)

Mounting material, depending on version

̶ Retaining clamp version: 6 retaining clamps graduated according to mounting panel
thickness for 1mm - 4mm

̶ Screw-in version: 4 nuts each with washers and spacers and 1 sleeve

Attention
For symbol inserts: quantity according to order, separate scope of delivery.

6. Storage
See Technical specification.

Note

If possible, avoid abrupt changes in the storage temperature of the keypad
cable and connector.

̶ Damage to the keypad, cable or connector

Do not expose the open contacts of the unprotected connector to
condensing air humidity.

̶ Damage to the keypad, cable or connector

Check the delivery immediately after unpacking with regard to
completeness and transport damages.

If any damage or incompleteness is found, please contact the supplier
immediately.

Optional accessories can be found in the annex Optional accessories.

www.eao.com 10.08.2022 | Seite 17

7. Mechanical installation/mounting
2 mounting versions are available: Installation in a panel by means of retaining clamps
(retaining clamp version) or screws (screw-in version).

 Installation in a panel by means of retaining clamps
(retaining clamp version)

See drawing 1707940001 Product Information.

If the keypad is mounted or dismounted several times, new retaining clamps must be used
each time. This prevents the retaining clamps from settling. To change the retaining clamps,
press the clamp flat on the underside, then you can push out and dismount the retaining clamp.

The marking of the retaining clamp for the respective front panel thickness is imprinted as
number 1 to 4 on the clamp, which is also visible when mounted. The number 1 on the retaining
clamp means that it is suitable for a front panel thickness of 1 mm. A mixed use of different
types of retaining clamps in a keypad is not permitted.

The keypad shall be pressed evenly into the panel with the mounted retaining clamps, while
tilting should be avoided. Press evenly on the housing and not on the buttons.

Note

Damage to the buttons

The plug-in connection must be established with a suitable connector. The plug-in connection
can alternatively be established before or after mounting the keypad into the panel.

The keypad is automatically centred to the panel by the 6 retaining clamps, i.e. the exact
positioning of the keypad depends on the accuracy of the installation opening.

www.eao.com 10.08.2022 | Seite 18

 Installation in a panel with self-locking nuts (screw-in
version)

See drawing 1707940001 Product Information.

If the keypad is mounted or dismounted several times, new self-locking nuts must be used
each time.

Caution!

Exceeding the maximum permissible torque inevitably leads to the
destruction of the keypad. The keypad is no longer tight nor leak proof in
this case.

Incorrect mounting of the keypad, e.g. incorrect number of rubber washers
or without washers (see 7.2.1 Mounting sequence), may result in damages
to the keypad.

̶ Risk of injury
̶ Damage to the keypad
̶ Electric shock

The specified overload force refers to the switches, not to the mounting
situation. For Rotary Cursor Controller it is recommended to use the screw-
in variant.

̶ Risk of Unfastening

7.2.1 Mounting sequence
First of all, the rubber washers should be mounted according to the front panel thickness. No
rubber washers are necessary for a front panel thickness of 1 mm. Mount 1 rubber washer per
screw bolt for a front panel thickness of 2 mm, mount 2 rubber washers per screw bolt for a
front panel thickness of 3 mm and mount 3 rubber washers per screw bolt for a front panel
thickness of 4 mm. Since these have a slightly smaller inner diameter, they clamp lightly on
the thread of the bolt to make it more difficult for the washers to fall off. Afterwards, the keypad
has to be installed in the front panel, while the cable incl. connector has to be pushed through
the sleeve. The sleeve can be installed rotated by 180° in each case. Afterwards, the 4 washers
have to be installed over the screw bolts and fixed with the nuts. The correct tightening torque
is defined in the 1707940001 Product Information and must be observed. The last step is to
connect the plug connector.

The keypad of the screw-in version must be aligned manually to the panel. There is no
automatic centering, the keypad can be slightly pushed into the mounting panel (depending on
the opening size of the panel).

www.eao.com 10.08.2022 | Seite 19

Caution!

For both versions, make sure that the opening for pressure and humidity
compensation on the underside of the keypad is not closed or covered while
installed.

̶ Damage to the keypad

The cables must not be bent during installation and the transition to the
potting area must not be damaged. The minimum bending radius of R 6 mm
for static bending and R 16 mm for dynamic bending (bending 10 times
max.) must not be undercut. The plug connector needs to be fixed (e.g. by
a DT Deutsch assembly clip) on application side to prevent the connector
plug from free movement!

̶ Damage to the keypad

 Installation of the symbol inserts
The symbol inserts can be changed in a panel both in the installed and in the non-installed
state of the keypad.

Each symbol insert can be installed rotated in a 90° grid. When mounting the symbol inserts,
make sure that the position of the symbols has the desired orientation towards the keypad.
The symbol inserts have a mechanical coding to the housing of the keypad. A slight twisting
of the symbol inserts to the keypad is technically possible and does not constitute a defect.

The symbol inserts must be mounted / dismounted under the edge of the housing around the
insert using a tool without sharp edges (similar to mounting a vehicle tyre on a rim). The insert
tool (article number: 09-0A00.0001), which is available as an accessory, is best suited for this.
There should be no visible gap between the housing of the keypad and the symbol insert after
installation, because dirt may penetrate here during operation and negatively influence the
lighting function of the keypad.

www.eao.com 10.08.2022 | Seite 20

Caution!
When mounting and dismounting the symbol inserts, make sure that the
housing is not damaged. The silicone of the housing must not be pierced,
otherwise the protection degree of the keypad is not fulfilled. Similarly, the
coating of the housing must not be damaged, otherwise the chemical
resistance of the keypad is no longer guaranteed.

̶ Damage to the keypad
̶ Loss of tightness of the keypad

It must be always ensured that the symbol inserts are mounted in the correct
position.

̶ Risk of injury

Note
When changing the symbol inserts, make sure that there are no liquids or
impurities between the housing and the symbol insert. These would
negatively affect the illumination of the symbols.

When using the version for snap-in mounting in a mounting panel, you need
retaining clamps.

When using the version for screw-in mounting in a mounting panel, you
need the sleeve, nuts, washers and spacers to bridge the distance between
keypad and sleeve in the thickness of the mounting panel.

Do not forget the spacers during mounting. Only hand-tighten the self-
locking nuts.

̶ Damage to the keypad and/ or sleeve

Note
Only use original mounting material and optional accessories.

̶ Damage to the keypad

 Use inside closed vehicles
Due to the product is designed for outdoor applications and not for use in closed vehicle
interior, odor testing according odor testing specifications like VDA270 is in customer’s
responsibility. The test should be performed to customer application needs.

www.eao.com 10.08.2022 | Seite 21

8. Electrical installation and interface operation

 Electrical installation
Electrical installation shall only be done when the system is under no power.

Connection of the keypad module is realized with the 6-pin sealed Deutsch connector DT04-
6P which is mounted to the cable.

Caution!
The vehicle electrical system has to be equipped with a sufficiently selected
suppressor diode to clip possible incoming overvoltage peaks before they
arrive at the keypad according to DIN EN 16750-2 (Load Dump Test B) if a
keypad with no load dump protection is selected. If a keypad with integrated
load dump protection circuit is selected, an extern mounted suppressor
diode are omitted.
̶ Damaging to the keypad

8.1.1 Pinning
Please refer to 1707940001 Product Information.

CAN bus termination on the keypad is not implemented by default. It has to be realized in the
network externally according to ISO11898.

Warning!
Cable must not be shortened. Connector must not be separated from the
cable.

̶ Damaging to the keypad
̶ Loosing liability for defects

 Booting and resetting behaviour
On first start-up and with a power reset the keypad will revert to its values that are saved in the
non-volatile memory. All changes that were done to it and not saved in non-volatile memory
will be reset. Certain objects of the keypad cannot be saved to non-volatile memory. That
means that these values are reset with every power reset and will only be able to be activated
by sending the corresponding CAN messages. All the objects that function in this way can be
found in the K-Matrix. For example the objects that include the activation of the LEDs are
always saved in volatile memory (after reset all LEDs will be turned off).

If a button is pressed before start-up or whilst a reset is performed. The button needs to be
released and pressed again whilst the keypad is running for it to be detected.

www.eao.com 10.08.2022 | Seite 22

Picture 1: Button State after Power-On Reset

www.eao.com 10.08.2022 | Seite 23

9. SAE J1939 communication protocol
The most important document to understand the communication with the keypad is the K-
Matrix. It includes a description of all available objects, how to address them and how to save
them. To work with the K-Matrix please note that some objects have a at the side. Which
means that the row can be expanded and more information is then available.

This manual includes excerpts from the K-Matrix. All functions that the keypad has to offer can
be found in the K-Matrix.

 Composition of the CAN Identifier
In a J1939 network each CAN message has a 29-bit CAN identifier (CAN extended) which
consists of a Parameter Group Number (PGN), a source address, a priority, a data page bit,
an extended data page bit and a target address. It is composed as the following table
represents:

 Bits 28 - 26 Bit 25 Bit 24 Bits 23 - 16 Bits 15 – 8 Bits 7 – 0

Explanation Priority Parameter Group Number (PGN) Source
address

 Reserved
(EDP)

Data Page PDU Format PDU Specific
(target
address/
group
extension)

Peer-to-
peer

See SAE
J1939-21

See SAE
J1939-21

See SAE
J1939-21

0x00 – 0xEF Target
address

Broadcast See SAE
J1939-21

See SAE
J1939-21

See SAE
J1939-21

0xF0 – 0xFF Group
extension

The priority of the Can message is used to optimize traffic on the Bus-System. The lower the
number, the higher the priority (000 highest priority; 111 lowest priority). Default values
for customary or information based messages is 6 (0b110).

If the PDU format is less than 240, which means that the communication is set to peer-to-peer
mode, the PDU specific field contains the target address.

If the PDU format is higher than 240, which means that the communication is set to broadcast
mode, the PDU format field is forming the PGN together with the PDU specific field. The
message is then sent to all members of the network.

The source address signals the address of the device that sent the CAN message.

The PGN uniquely defines the purpose of the message.

www.eao.com 10.08.2022 | Seite 24

 Keypad specific values
The default address of the keypad is set to 0x80 (0d128). It can be modified either by start up
with the automatic Address claiming procedure (explained in 9.3), by Commanded Address
message which is described in SAE J1939-81 or in our case with the proprietary Source
Address Command (as described in 9.4.3).

The most important PGNs for communicating with the keypad are the Proprietary A and
Proprietary B PGNs. All of the functions of the keypad are mapped to those. Basic functions
are described in this manual. All details and all functions can be found in the corresponding K-
Matrix.

 Installation in a network
After connecting the keypad electronically to the network an address claim procedure is started
automatically (as described in JAE J1939-81).

The software of a J1939 CAN device is the so called Controller Application (CA). Every CA is
equipped with a unique address and an associated device name. To determine which CA
sends a message each message contains a source address. There are predefined ranges for
those addresses and they range from 0 to 255.

In the case of the Rugged Keypad a range of the source address is limited to the range
between 128 and 247. Default value for the address is 128.

The address claim procedure sends a message with the corresponding parameter group
number as specified by the J1939 standard with the desired source address and a 64 bit device
name. This device name contains information about the Application and describes the main
function. If there are other devices in the J1939 CAN network that already use the desired
source address the device name with the higher priority claims the address.

Example of default address claim message as sent by the keypad module with default values:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte
7

0x18EEFF80 8 0xFF 0xFF 0x1F 0x74 0x00 0x87 0x00 0x80

For the explanation which data byte contains which information please refer to the
corresponding K-matrix or the SAE document SAE J1939-81. For practical use of the keypad
it should be avoided to use the address claim functionality to manage the addresses of two or
more keypads on the bus. It has to be taken into account that the keypads don’t keep their
addresses assigned by address claim after a power-on-Reset. That means that the procedure
of address claim starts after every power-on-reset and the keypads can be get different
addresses each time they are powered on. The best way to use the keypad is to configure the
node-ID as explained in 9.8.2.

If there is no address conflict detected the keypad will start with its normal communication and
claims the source address 128 (0x80).

www.eao.com 10.08.2022 | Seite 25

 Service Data – Proprietary A
All access that is needed can be realized through the Prop A PGN. The composition of the
CAN message to interact with the keypad accordingly is described in the following. How a
message is composed also relies on the object the user wants to address. If the object is
defined as an 8-bit data object it looks different than interacting with a 16- or 32- bit object. The
definition of each object can be found in the K-Matrix.

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EF8000 8 CMD Byte Index of Data
object

Subindex of
Data object

Content specific
to addressed
Data object

9.4.1 Read Data object Request
̶ Keypad action on Rx:

- If INDEX and SUBINDEX are readable objects, reply with a "Read data object reply
OK" message.

- If INDEX and SUBINDEX are not readable objects, reply with a "Read data object
reply NOK" message.

̶ Transmitted by:
- User Application Master

̶ Data bytes content:

BYTE # 8-bit Data 16-bit Data 32-bit Data
0 COMMAND (0x00)
1 INDEX of returned Data Object
2 SUBINDEX of returned Data Object
3 Not used Not used Not used
4 Not used Not used Not used
5 Not used Not used Not used
6 Not used Not used Not used
7 Not used Not used Not used

̶ Example message read request for variant of the keypad (Index 0x08, Subindex 0x00):

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EF8000 8 0x00 0x08 0x00 0x00 0x00 0x00 0x00 0x00

www.eao.com 10.08.2022 | Seite 26

9.4.2 Read data object reply OK
̶ Keypad action on Rx:

- Ignore
̶ Transmitted by:

- Keypad
̶ Data bytes content:

BYTE # 8-bit Data 16-bit Data 32-bit Data
0 COMMAND (0x02)
1 INDEX of returned Data Object
2 SUBINDEX of returned Data Object
3 DATA DATA[0] (LSB) DATA[0] (LSB)
4 Not used (0xFF) DATA[1] (MSB) DATA[1]
5 Not used (0xFF) Not used (0xFF) DATA[2]
6 Not used (0xFF) Not used (0xFF) DATA[3] (MSB)
7 Not used (0xFF) Not used (0xFF) Not used (0xFF)

̶ Example message response to read request for variant of the keypad (Index 0x08,

Subindex 0x00):

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EF0080 8 0x02 0x08 0x00 0xAB 0x06 0xFF 0xFF 0xFF

̶ Information in Databytes 3 and 4 ordered and put together:
- 0x06AB decimal: 1707 the example is a keypad without RCC

9.4.3 Read data object reply NOK
̶ Keypad action on Rx:

- Ignore
̶ Transmitted by:

- Keypad
̶ Data bytes content:

BYTE # 8-bit Data 16-bit Data 32-bit Data
0 COMMAND (0x03)
1 INDEX of returned Data Object
2 SUBINDEX of returned Data Object
3 Reject Reason
4 Not used (0xFF) Not used (0xFF) Not used (0xFF)
5 Not used (0xFF) Not used (0xFF) Not used (0xFF)
6 Not used (0xFF) Not used (0xFF) Not used (0xFF)
7 Not used (0xFF) Not used (0xFF) Not used (0xFF)

www.eao.com 10.08.2022 | Seite 27

̶ Example message response to read request for variant of the keypad (Index 0x08,
Subindex 0x04):

The description for the reject reason code are defined in the K-Matrix.

9.4.4 Write data object request
̶ Keypad action on Rx:

- If INDEX and SUBINDEX are writeable objects, reply with a "Write data object reply
OK" message and write data into the indexed data object.

- If INDEX and SUBINDEX are not writeable objects, reply with a "Write data object
reply NOK" message.

̶ Transmitted by:
- User Application Master

̶ Data bytes content:

BYTE # 8-bit Data 16-bit Data 32-bit Data
0 COMMAND (0x04)
1 INDEX of returned Data Object
2 SUBINDEX of returned Data Object
3 DATA DATA[0] (LSB) DATA[0] (LSB)
4 Not used DATA[1] (MSB) DATA[1]
5 Not used Not used DATA[2]
6 Not used Not used DATA[3] (MSB)
7 Not used Not used Not used

̶ Example message write request for J1939 Node-ID (Index 0x1B, Subindex 0x00, new

Node Address 0x85):

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EF8000 8 0x04 0x1B 0x00 0x85 0x00 0x00 0x00 0x00

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EF0080 8 0x03 0x08 0x04 0x09 0xFF 0xFF 0xFF 0xFF

www.eao.com 10.08.2022 | Seite 28

9.4.5 Write data object reply OK
̶ Keypad action on Rx:

- Ignore
̶ Transmitted by:

- Keypad
̶ Data bytes content:

BYTE # 8-bit Data 16-bit Data 32-bit Data
0 COMMAND (0x06)
1 INDEX of returned Data Object
2 SUBINDEX of returned Data Object
3 DATA DATA[0] (LSB) DATA[0] (LSB)
4 Not used (0xFF) DATA[1] (MSB) DATA[1]
5 Not used (0xFF) Not used (0xFF) DATA[2]
6 Not used (0xFF) Not used (0xFF) DATA[3] (MSB)
7 Not used (0xFF) Not used (0xFF) Not used (0xFF)

Example message response to write request for J1939 Node Address (Index 0x1B,
Subindex 0x00, new Node Address 0x85):

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EF0080 8 0x06 0x1B 0x00 0x85 0xFF 0xFF 0xFF 0xFF

9.4.6 Write data object reply NOK
̶ Keypad action on Rx:

- Ignore
̶ Transmitted by:

- Keypad
̶ Data bytes content:

BYTE # 8-bit Data 16-bit Data 32-bit Data
0 COMMAND (0x07)
1 INDEX of returned Data Object
2 SUBINDEX of returned Data Object
3 Reject Reason
4 Not used (0xFF) Not used (0xFF) Not used (0xFF)
5 Not used (0xFF) Not used (0xFF) Not used (0xFF)
6 Not used (0xFF) Not used (0xFF) Not used (0xFF)
7 Not used (0xFF) Not used (0xFF) Not used (0xFF)

̶ protection register (Index 0x1B, Subindex 0x00, new Node Address 0x85):

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EF0080 8 0x07 0x1B 0x00 0x0B 0xFF 0xFF 0xFF 0xFF

www.eao.com 10.08.2022 | Seite 29

 Process Data Proprietary A and B
To make the setting of Lighting parameters and the reading of button states and so on easier,
those basic functions are mapped by specific command bytes. All possibilities can be found in
the K-Matrix.

9.5.1 Process Data Proprietary A – Rx configuration messages
To easily control all lighting capabilities of the keyboard, all of the basic functions can be
accessed through specific command bytes on Prop A. All capabilities and how to address them
can be found in the K-Matrix. The command bytes are stated in the following:

̶ 0x10 basic lighting settings (Global brightness halos and symbols, activate
 halos and symbols)

̶ 0x11 active colour setting halos
̶ 0x12 active brightness setting halos
̶ 0x13 active brightness setting symbols
̶ 0x14 temporal pattern halos
̶ 0x15 temporal pattern symbols
̶ 0x16 activate halo LEDs

̶ Example message setting the global brightness of all LEDs to max (250) and activating

all LEDs

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EF8000 8 0x10 0xFA 0xFA 0x3F 0x3F 0x00 0x00 0x00

0x3F the LEDs for the 6 buttons are mapped bitwise, so 0x3F means all
buttons on because in binary it is a 0b00111111

9.5.2 Process Data Proprietary B – Tx process data
The keypad is cyclically transmitting messages on the PGN Prop B to make the reading of
button states, the current temperature and a message counter with Checksum as easy as
possible.

How this message is composed is explained in the following. The K-Matrix specifies exactly
the values in each byte and what they stand for.

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18FF0080 8 Button
pressed
state for
Buttons 1-
4

Button
pressed
state for
Buttons 5-
6

Button
stuck
error state
for
Buttons 1-
4

Button
stuck error
state for
Buttons 5-
6

Not
available
0xFF

Current
temper-
ature

Not
available
0xFF

4-bit
Message
Counter
and 4- Bit
Checksum

www.eao.com 10.08.2022 | Seite 30

 Diagnostics
The keypad supports the Diagnostic Trouble Codes as specified in SAE J1939-73. The
corresponding diagnostic message PGNs (DM1, DM2, DM3) can be found in the K-Matrix and
are specified if they need to be read via read command or are submitted cyclically. The error
codes are listed in the K-matrix too and are shown in the table below:

Error code Name Description
0x7F000 No error

0x7F250 Overvoltage Input voltage exceeds 33 volts

0x7F250 Undervoltage Input voltage falls below 8 volts

0x7F030 Overtemperature
warning

Keypad temperature exceeds 100°C

0x7F040 Overtemperature
error

Keypad temperature exceeds 125 °C

0x7F050 Temperature
sensor defect

Implausible temperature values are measured

0x7F070 Button stuck Button is pressed longer than the time value defined in object
0x2101 (default value: 10s)

0x7F110 Button pressed at
startup

One or more buttons are pressed during power-on-reset

0x7F080 Button unstable Switching element bounces excessively; reason: switching
system worn out

0x7F100 Button out of range Resistance of the switching system reach upper limit; reason:
switching system worn out

0x7F120 Button crosstalk Button was detected as pressed although a other button should
be pressed; detection over cyclically detuning the voltage divider
of each button; reason: incoming moisture in the keypad

0x7F130 Button test low Cyclically detuning of voltage divider of each button returns
implausible values; reason: incoming moisture in the keypad,
switching system worn out

The current module temperature and the current voltage is measured by the keypad and can
be read via a read request according to chapter 9.4.

9.6.1 Current Module Temperature
The object for storing the temperature is object number 200 (0xC8) and it is also cyclically
transmitted by the Process Data Prop B as described in chapter 9.5.2. The value transmitted
is a hexadecimal value. To calculate the actual temperature it has to be transferred into decimal
and 40 needs to be subtracted.

www.eao.com 10.08.2022 | Seite 31

Example for calculating the current temperature value:

Given value hexadecimal Given value decimal Subtract by Actual temperature

0x49 73 40 33 °C

9.6.2 Current voltage
The object for storing the voltage is object number 201 (0xC9). The value is a 16 Bit
hexadecimal value LSB first in data bytes 3 and 4. The value needs to be transferred into
decimal and then shows the current voltage in mV.

Example for calculating the current Voltage:

Given value hex byte 3 Given value hex byte 4 Value ordered and in
decimal

Actual voltage

0xEB 0x34 13547 mV 13,547 V

9.6.3 Error handling

9.6.3.1 Active diagnostic trouble codes (DM1)
For the active diagnostic trouble codes two ways of communication are possible:

̶ Only one active diagnostic trouble code:

The DM1-message is send as shown:

The data field contains the trouble Code in data Byte [2-5]. The data Byte [0, 1, 6, 7] are not
used by the keypad and send as 0x00 [0, 1] or [6, 7]. A detailed structure of the Trouble Code
is shown below:

Bit TC1 TC2 TC3 TC4
0 SPN[0] SPN[8] FMI[0] OC[0]
1 SPN[1] SPN[9] FMI[1] OC[1]
2 SPN[2] SPN[10] FMI[2] OC[2]
3 SPN[3] SPN[11] FMI[3] OC[3]
4 SPN[4] SPN[12] FMI[4] OC[4]
5 SPN[5] SPN[13] SPN[16] OC[5]
6 SPN[6] SPN[14] SPN[17] OC[6]
7 SPN[7] SPN[15] SPN[18] 0

TC1 contains the Low Byte of the SPN and TC2 the second Byte. The Bit 16, 17 and 18 of the
SPN are Bit 5, 6 and 7 of TC3. The SPN values of all possible errors are shown in the J1939
K-matrix for the rugged keypad. TC3 Bit 0-4 contains the Failure Mode Identification Code
(FMI). The 32 possible FMI codes are described in SAE J1939-73. TC4 contains the
occurrence count of the active error. The maximum value of occurrence count is 127. Bit 7 of
TC4 contains the SPN conversion method and is set to 0.

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18FECA80 8 0x00 0x00 TC1 TC2 TC3 TC4 0xFF 0xFF

www.eao.com 10.08.2022 | Seite 32

This message is cyclically send every second from the keypad. The cyclic time is a protocol
standard and can’t be changed. If no error is active, the data bytes [0-7] of the message
contains 0x00.

Example 1: Undervoltage Error (0x7F260)

The FMI for the example contains the value 0x04. According to SAE J1939-73 the value 0x04
stands for: “voltage below normal”. The occurrence count is 0x01. If the error occurs for a
second time, the occurrence count will be incremented.

Example 2: Stuck Button Error (0x7F070); Button 4 Stuck

The Button Number is added to the general stuck button SPN 0x7F070. The result is SPN
0x7F074 for button 4 stuck. The FMI is 0x02, that means: “data erratic, intermittent or
incorrect”. The error occurs for the 5th time.

̶ Two or more active diagnostic trouble codes:

If two or more diagnostic trouble codes are active, the trouble codes will be send over the
transport protocol. The following table shows the messages:

The data transmission starts with a broadcast announce message send by the keypad to
signalize an upcoming transmission of DM1 (data byte 5-7 of TP.CM_BAM contains the PGN
of DM1). The message contains the byte count of DM1 (16-bit value) and a message count (8-
bit value). After the broadcast announce message, data transfer messages are send by the
keypad. The first data byte of TP.DT contains the message number, the following 7 byte are
payload.

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18FECA
80 (DM1)

8 0x00 0x00 0x60 0xF2 0xE4 0x01 0xFF 0xFF

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18FECA
80 (DM1)

8 0x00 0x00 0x74 0xF0 0xE2 0x05 0xFF 0xFF

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x1CECFF80
(TP.CM_BAM)

8 0x20 Byte
Count
LSB

Byte
Count
MSB

Message
Count

0xFF 0xCA 0xFE 0x00

0x1CEBFF80
(TP.DT)

8 Message
number

Message
Data 0

Message
Data 1

Message
Data 2

Message
Data 3

Message
Data 4

Message
Data 5

Message
Data 6

0x1CEBFF80
(TP.DT)

8 Message
number

Message
Data 7

Message
Data 8

Message
Data 9

Message
Data 10

Message
Data 11

Message
Data 12

Message
Data 13

www.eao.com 10.08.2022 | Seite 33

Example: Undervoltage Error (0x7F260), Button 3 Stuck Error (0x7F073), Button 4 Stuck Error
(0x7F074), Button 5 Stuck Error (0x7F075)

The 18 data bytes (data byte 1-2 in TP.CM_BAM) are packed in three messages (data byte 3
in TP.CM_BAM). The trouble codes are packed in the following format:

̶ 0x00, 0x00, X, X, X, X, Y, Y, Y, Y, …, 0xFF, 0xFF, …

The data starts with two bytes 0x00 followed by the trouble codes. X and Y are symbolic for a
single trouble code. After the last trouble code, the payload of the last data transfer message
are filled up with 0xff to get an 8 byte data field.

9.6.3.2 Previously active diagnostic trouble codes (DM2)

The keypad saves every occurred error in an internal memory that can be read out over a
request. Same as in case DM1 it is necessary to decide between two possible ways of
communication:

̶ Only one previously active diagnostic trouble code:

If one error are stored in the internal memory, the data transmission are showed in the following
table:

The DM2 message (PGN = 0x18FECB80) takes the same payload as DM1 message but they
are not send automatically. The DM2 message must be requested with a request message.

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x1CECFF80
(TP.CM_BA
M)

8 0x20 0x12 0x00 0x03 0xFF 0xCA 0xFE 0x00

0x1CEBFF80
(TP.DT)

8 0x01 0x00 0x00 0x73 0xF0 0xE2 0x03 0x74

0x1CEBFF80
(TP.DT)

8 0x02 0xF0 0xE2 0x07 0x75 0xF0 0xE2 0x03

0x1CEBFF80
(TP.DT)

8 0x03 0x60 0xF2 0xE4 0x03 0xFF 0xFF 0xFF

CAN-ID DL
C

Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EA80FF
(Request)

3 0xCB 0xFE 0x00 --- --- --- --- ---

0x18FECB80
(DM2)

8 0x00 0x00 TC1 TC2 TC3 TC4 0xFF 0xFF

www.eao.com 10.08.2022 | Seite 34

Example: Undervoltage Error (0x7f260, Count = 3)

̶ Two or more previously active diagnostic trouble codes:

If two or more error are stored in the error memory, the data transmission occurs in the same
way as a DM1 transmission with two or more errors over the data transfer protocol:

The transmission must be requested over a request message with PGN of DM2 in the payload.
Then the keypad send a ready to send answer with the byte count and the message count of
the transmission. Before the keypad starts transmitting DM2 it expects a clear to send
message. After the data transfer the keypad expects an end of message acknowledgment.
Without an acknowledgment the keypad sends a connection abort message, shown in the
following table:

The first data byte of TP.Conn_Abort identify the connection abort. The data byte 1 describe
the reason of the connection abort and is specified in the document SAE J1939-21. In case
that the TP.CM_EndOfMsgACK are not received by the keypad, the reason code is 0x03 (a
timeout occurred and this is the connection abort to close the session).

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EA80FF
(Request)

3 0xCB 0xFE 0x00 --- --- --- --- ---

0x18FECB80
(DM2)

8 0x00 0x00 0x60 0xF2 0xE4 0x03 0xFF 0xFF

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EA80FF
(Request)

3 0xCB 0xFE 0x00 --- --- --- --- ---

0x1CECFF80
(TP.CM_RTS)

8 0x10 Byte
Count
LSB

Byte
Count
MSB

Message
Count

0xFF 0xCB 0xFE 0x00

0x1CEC80FF
(TP.CM_CTS)

8 0x11 Packet
Count

Next
Package

0xFF 0xFF 0xCB 0xFE 0x00

0x1CEBFF80
(TP.DT)

8 Message
number

Message
Data 0

Message
Data 1

Message
Data 2

Message
Data 3

Message
Data 4

Message
Data 5

Message
Data 6

0x1CEBFF80
(TP.DT)

8 Message
number

Message
Data 7

Message
Data 8

Message
Data 9

Message
Data 10

Message
Data 11

Message
Data 12

Message
Data 13

0x1CEC80FF
(TP.CM_End
OfMsgACK)

8 0x13 Byte
Count
LSB

Byte
Count
MSB

Message
Count

0xFF 0xCB 0xFE 0x00

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x1CECFF8
0 (TP.Conn_
Abort)

3 0xFF 0x03 0xFF 0xFF 0xFF 0xCB 0xFE 0x00

www.eao.com 10.08.2022 | Seite 35

Example: Overvoltage Error (0x7F250, Count = 1), Button 2 Stuck Error (0x7F072, Count = 2),
Button 0 Stuck Error (0x7F070, Count = 2)

The FMI of the first trouble code (overvoltage error) are 0x03. That means: “voltage above
normal, or shorted to high source”. The payload are exactly 14 byte and the second data
transfer message are not filled up with 0xFF at the end.

9.6.3.3 Diagnostic data clear/reset of previously active DTCs (DM3)
For resetting all stored error the following messages are used:

The request message contains the PGN 0x00FECC (DM3) in the data field. After the stored
errors are cleared, the keypad sends an acknowledgment message with the PGN of DM3.

 Save settings to Volatile/Non-Volatile memory
By default all changes written in the objects like lighting, node address and so on are stored in
a volatile memory after writing. This means that with a voltage reset these changes will not
take any effect any more. The keypad has the ability to store settings in the non-volatile
memory to implement them as fully available after a reset of the module.

Saving into the non-volatile memory is done by writing into the object number 5 (0x05). The
value written into the object depends on the group to which the setting in question belongs to.
Please refer to the K-Matrix to see which setting belongs to which save group.

How to write in the Object is described in chapter 9.4.3.

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EA80FF
(Request)

3 0xCB 0xFE 0x00 --- --- --- --- ---

0x1CECFF80
(TP.CM_RTS)

8 0x10 0x0E 0x00 0x02 0x04 0xCB 0xFE 0x00

0x1CEC80FF
(TP.CM_CTS)

8 0x11 0x01 0x01 0xFF 0xFF 0xCB 0xFE 0x00

0x1CEBFF80
(TP.DT)

8 0x01 0x00 0x00 0x50 0xF2 0xE3 0x01 0x72

0x1CEBFF80
(TP.DT)

8 0x02 0xF0 0xE2 0x02 0x70 0xF0 0xE2 0x02

0x1CEC80FF
(TP.CM_End
OfMsgACK)

8 0x13 0x0E 0x00 0x02 0xFF 0xCB 0xFE 0x00

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EA80
FF
(Request)

3 0xCC 0xFE 0x00 --- --- --- --- ---

0x18E8FF
80(ACKM)

8 0x00 0x00 0x00 0x00 0x00 0xCC 0xFE 0x00

www.eao.com 10.08.2022 | Seite 36

Example message for saving all data belonging to the Network Save Group (e.g. Node
Address).

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EF8000 8 0x04 0x05 0x00 0xA4 0x00 0x00 0x00 0x00

Some changes (e.g. Node Address) take effect after voltage reset of the keypad.

 Custom Layer Settings
The Baudrate and the Node Address can be changed by the user. The default values are as
follows:

Object Default value

baud rate (0x09) 0x03 (250 kbps)

Node-ID (0x1B) 0x80 (128)

The objects with their respective description including the corresponding safe/clear group can
be found in the K-Matrix. To change the values the user has to send a write data object request
(see 9.4.3) to the keypad with the corresponding object. After the keypad accepted the change
and responded with a write data object reply OK message the values have to be stored in non-
volatile memory (see 9.7). After the values are stored correctly a power reset has to be
performed. After that the keypad will be set to the new settings and communication will be able
only by using the changed values.

9.8.1 Manually configure the Baudrate
As an example the following table shows the J1939 messages that are necessary for changing
the Baudrate from 250 kbps (default value) to 500 kbps.

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x09 0x00 0x02 0x00 0x00 0x00 0xFF

0x18EF0080 8 0x06 0x09 0x00 0x02 0x00 0x00 0x00 0xFF

0x18EFFF00 8 0x04 0x05 0x00 0xA4 0x00 0x00 0x00 0x00

0x18EF0080 8 0x06 0x05 0x00 0xA4 0x00 0x00 0x00 0xFF

First step for changing the baud rate is to send the new baud rate to the keypad with a Prop A
message defined in J1939-21. Data byte 3 represents the new baud rate (0x02 = 500kbps;
0x03 = 250kbps), data byte 1 the index of the baud rate and data byte 0 the command (Write
data object request). After the keypad receives a valid baud rate setting, the keypad send a
“write data object reply OK”- message (data byte 0 = 0x06).

Second step is to save the new baud rate to the non-volatile memory. The index of the store-
NVM-object is 0x05 (data byte 1). The data byte 3 contains the save group. Referenced to the
J1939 K-Matrix of the keypad the baud rate uses the save group “Network” (0xA4). After the
write request the keypad sends a “write data object reply OK”- message.

www.eao.com 10.08.2022 | Seite 37

Third step is to disconnect the keypad from the power supply and do a power-on-reset. After
that the keypad uses the new baud rate 500kbps for communication.

9.8.2 Manually configure the Node-ID
As an example the following table shows the J1939 messages that are necessary for
changing the Node-ID from 0x80 (default value) to 0x85.

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x1B 0x00 0x85 0x00 0x00 0x00 0xFF

0x18EF0080 8 0x06 0x1B 0x00 0x85 0x00 0x00 0x00 0xFF

0x18EFFF00 8 0x04 0x05 0x00 0xA4 0x00 0x00 0x00 0x00

0x18EF0080 8 0x06 0x05 0x00 0xA4 0x00 0x00 0x00 0xFF

First step for changing the Node-ID is to send the new ID to the keypad with a Prop A message
defined in J1939-21. Data byte 3 represents the new Node-ID, Data byte 1 the Index of the
Node-ID and data byte 0 the command (write data object request). After the keypad receives
a valid Node-ID, the keypad send a “write data object reply OK”- message (Data byte 0 =
0x06).

Second step is to save the new node-ID to the non-volatile memory. The index of the store-
NVM-object is 0x05 (data byte 1). The data byte 3 contains the save group. Referenced to the
J1939 K-Matrix of the keypad the Node-ID uses the save group “Network” (0xA4). After the
write request the keypad sends a “write data object reply OK”- message.

Third step is to disconnect the keypad from the power supply and do a Power-On-Reset. After
that the keypad uses the new Node-ID 0x85 for communication.

 Basic Functions

9.9.1 Button press data
To read from the device in case a button is pressed, the device sends the Prop B message
cyclically as described in chapter 9.5.2.

The state for each button can also be read by a read command as described in 9.4. The
information needed can be found in the object with the index 202 (0xCA). Sub-Indexes 0 to 5
correspond to the Buttons 1 – 6.

For further information please refer to the corresponding K-Matrix.

9.9.1.1 Stuck Button Time
The Keypad provide the option to detect a continuous pressed button and send an error
message after a defined time. This so called stuck button detection will be controlled via the
stuck button detection time object (Object index: 0xA2)

9.9.1.2 Reconfigure Stuck Button Time
The keypads with software version 04.05.001 have no possibility to reconfigure the stuck
button time. The values is set fixed to 10 seconds and can only be changed during production
process.

www.eao.com 10.08.2022 | Seite 38

Keypads with software version 06.03.000 or newer provide the possibility to reconfigure the
stuck button time in field. The following table shows an example for reconfigure the stuck button
time to 3 seconds and save the new stuck button time:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0xA2 0x00 0xB8 0x0B 0x00 0x00 0xFF

0x18EF0080 8 0x06 0xA2 0x00 0xB8 0x0B 0x00 0x00 0xFF

0x18EFFF00 8 0x04 0x05 0x00 0xA0 0x00 0x00 0x00 0x00

0x18EF0080 8 0x06 0x05 0x00 0xA0 0x00 0x00 0x00 0xFF

Data byte 3 contains the low byte and data byte 4 the high byte of the 16-bit value stuck button
time.

9.9.2 Symbol Illumination
The symbols of the keypad are illuminated with white LEDs. In the following the corresponding
Objects will be described to turn them on and how to use all the functions the keypad has to
offer. Writing of values will not be described as it is already stated in chapter 9.4.3. All changes
done in the object will be reset after voltage reset if not stored in non-volatile memory according
to chapter 9.7.

9.9.2.1 Activating Symbol Illumination
There are 2 ways to activate the lighting of the symbols. In both variants it is mandatory to
know that the LEDs for each button can be activated or deactivated exclusively. This is
managed by bitcoding the LEDs for the buttons. Writing a 1 to the desired bit-position the LED
will be turned on, writing a 0 will turn it off. By adding the bit-values of the buttons together it is
possible to activate any desired pattern of the symbols.

Button 1 Button 2 Button 3

0b000001 (0x01) 0b000010 (0x02) 0b000100 (0x04)

Button 4 Button 5 Button 6

0b001000 (0x08) 0b010000 (0x10) 0b100000 (0x20)

1. Activation through Process data Prop A config message
This is described in chapter 9.5.1. The corresponding message identifier is 0x10. And the
Data byte containing the information for the symbol LEDs is Byte 4. This can be found in
the corresponding K-Matrix as well.
Example data field for turning on the symbol LEDs of the first and third button:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x10 0x00 0x00 0x00 0x05 0x00 0x00 0x00

www.eao.com 10.08.2022 | Seite 39

2. Activation through writing in the corresponding object with a write request
There is an object described in the K-Matrix that stores the information for the
activated/deactivated symbol LEDs. The object in question is number 108 (0x6C). Writing
the corresponding bit-value into this object will lead to the same result as described in
chapter 9.4.3.
Example data field for turning on the symbol LEDs of the first and third button:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x6C 0x00 0x05 0x00 0x00 0x00 0x00

9.9.2.2 Choosing the active brightness setting for the symbol LEDs
There are 3 predefined brightness settings available to choose from in the keypad. The K-
Matrix defines the object and which value stands for which setting. Subindex 0 to 5 stands for
the buttons 1 to 6.

Value Setting name Setting description

0x00 Setting 0 (even) Brightness for LEDs button wise

0x01 Setting 1 (even) Brightness for LEDs button wise

0x02 Setting 2 (individual) Brightness for LEDs individually (corresponds to Halo LEDs, as the
symbol is illuminated with only one LED, see also chapter 9.9.3)

There are 2 ways to set the active brightness setting for the buttons.

1. Activation through Process data Prop A config message
This is described in 9.5.1. The corresponding message identifier is 0x13. The data bytes
1 through 6 are corresponding to buttons 1 through 6. This can be found in the K-matrix
as well.
Example data field for setting the active brightness setting of all button symbol LEDs to
setting 1:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x13 0x01 0x01 0x01 0x01 0x01 0x01 0x00

2. Activation through writing in the corresponding object with a write request
There are objects described in the K-Matrix that store the information for the active
brightness setting. The object in question is number 101 (0x65). The subindexes 0 through
5 correspond with the buttons 1 to 6. Writing an object is described in 9.4.3.
Example data field for setting the active brightness setting for button 2 to Setting 1:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x65 0x01 0x01 0x00 0x00 0x00 0x00

www.eao.com 10.08.2022 | Seite 40

9.9.2.3 Changing the brightness setting for the symbol LEDs
Each of the aforementioned brightness settings can be accessed through objects as described
in the K-Matrix.

Object Setting name Setting description

59 (0x3B) Setting 0 (even) Brightness for LEDs button wise

60 (0x3C) Setting 1 (even) Brightness for LEDs button wise

61 (0x3D) Setting 2 (individual) Brightness for LEDs individually (corresponds to Halo LEDs,
as the symbol is illuminated with only one LED)

The subindex for Setting 0 and 1 are mapped from 0 to 5 corresponding to the buttons 1 to 6.
You can find the mapping for Setting 2 in the K-Matrix. Writing an object is described in chapter
9.4.3.

Example data field for setting the brightness in Setting 1 for button 2 to 20% (0x32):

CAN-ID DLC Data

Byte 0
Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x3C 0x01 0x32 0x00 0x00 0x00 0x00

9.9.2.4 Changing the temporal patterns for the symbol LEDs (flash modes)
There are 4 predefined temporal patterns available for the symbol LEDs.

Value Setting name Setting description

0x00 Steady LED always on

0x01 Flash slow LED flashing on and off with default value times

0x02 Flash fast LED flashing on and off with default value times faster than
0x01

0x03 Pulsate LEDs slowly turning off and on with default value times

There are 2 ways to set the temporal pattern setting for the buttons.

1. Activation through Process data Prop A config message
This is described in 9.5.1. The corresponding message identifier is 0x15. The data bytes
1 through 6 are corresponding to buttons 1 through 6. This can be found in the K-Matrix
as well.
Example data field for setting the temporal pattern of all button symbol LEDs to setting 1:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x15 0x01 0x01 0x01 0x01 0x01 0x01 0x00

www.eao.com 10.08.2022 | Seite 41

2. Activation through writing in the corresponding object with a write request
There is an object described in the K-Matrix that stores the information for the temporal
pattern setting for the symbol LEDs. The object in question is number 107 (0x6B). The
subindexes 0 through 5 correspond with the buttons 1 to 6. Writing an object is described
in 9.4.3.
Example data field for setting the temporal pattern for button 2 to Setting 1:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x6B 0x01 0x01 0x00 0x00 0x00 0x00

9.9.2.5 Adjusting the timings in flash modes
The 2 flashing modes described in chapter 9.9.2.4 can be adjusted by the user. This means
that the timings of how long the LED stays on and the period when it is turned on can be
adjusted. For this there are 4 objects defined in the K-Matrix:

Object Object name Object description

41 (0x29) Flash_Slow_On_Time Timing for how long the LED is on in Flash mode slow

42 (0x2A) Flash_Slow_Period_ms Time after which the LED is turned on in Flash mode slow

43 (0x2B) Flash_Fast_On_Time Timing for how long the LED is on in Flash mode fast

44 (0x2C) Flash_Fast_Period_ms Time after which the LED is turned on in Flash mode fast

There are default values defined for each object in the K-Matrix. But each value can be
changed by hand. The values can be edited by means of a Prop A config message as
described in 9.5.1.

Example data fields for setting the timing of the fast mode to 20ms LED on after each 50ms:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x2B 0x00 0x14 0x00 0x00 0x00 0x00
0x18EFFF00 8 0x04 0x2C 0x00 0x32 0x00 0x00 0x00 0x00

9.9.2.6 Changing the global brightness for the symbol LEDs
The global brightness setting is a setting that dims the LEDs above all other settings. So to get
realistic values in the aforementioned settings the global brightness needs to be set to 100%.
The brightness is coded in 250 steps from 0 (0%) to 250 (100%). The setting of global
brightness always affects all Symbol LEDs at once.

There are 2 ways to set the global brightness for the symbol LEDs.

www.eao.com 10.08.2022 | Seite 42

1. Activation through Process data Prop A config message
This is described in 9.5.1. The corresponding message identifier is 0x10. The data byte
that accesses this information is Byte number 2.
Example data field for setting the global brightness of the symbol LEDs to 20%:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x10 0x00 0x32 0x00 0x00 0x00 0x00 0x00

2. Activation through writing in the corresponding object with a write request

There is an object described in the K-Matrix that stores the information for the global
brightness setting for the symbol LEDs. The object in question is number 103 (0x67).
Writing an object is described in 9.4.3.
Example data field for setting the global brightness for the symbol LEDs to 20%:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x67 0x00 0x32 0x00 0x00 0x00 0x00

9.9.3 Halo-Ring Illumination
The Halo-Rings of the keypad are illuminated with 4 RGB LEDs for each button. In the following
the corresponding objects will be described to turn them on and how to use all the functions
the keypad has to offer. Writing of values will not be described as it is already stated in chapter
9.4.3.

All changes done in the object will be reset after voltage reset if not stored in non-volatile
memory according to chapter 9.7.

9.9.3.1 Activating Halo lighting
As there are 4 LEDs per button it is important to know that there are always 2 steps needed to
activate the halo LEDs. In the first step it is set which of the 4 LEDs are supposed to be turned
on. And in the second step the halo for the button in question is activated.

1. First step: setting the LEDs that need to be turned on per button
This is done through writing in the corresponding area in Process data Prop A. How this
is done is described in 9.5.1. The corresponding message identifier is 0x16. The data
bytes 1 through 6 correspond with the buttons 1 to 6. The values of each data byte are bit
coded for the 4 LEDs. The value written will either turn the LED on or off. 1 means on and
0 means off. By adding the Bit-Values of the LEDs together it is possible to activate any
desired pattern of the LEDs.
They are coded as follows:

Buttons 1 - 6

Bit 3 Bit 0

Bit 2 Bit 1

www.eao.com 10.08.2022 | Seite 43

Example data field for activating all four LEDs of the halo of button 2:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x16 0x00 0x0F 0x00 0x00 0x00 0x00 0x00

2. Second step: activating the halo for the button in question

There are now 2 ways of achieving this.
a. Activation through Process data Prop A config message

This is described in 9.5.1. The corresponding message identifier is 0x10. And the
Data byte containing the information for the symbol LEDs is Byte 3. This can be
found in the K-Matrix as well. The value written in the corresponding byte is bit-coded
similarly to the symbol activation described in 9.9.2.1.
Example data field for turning on the halo for button 2:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x10 0x00 0x00 0x02 0x00 0x00 0x00 0x00

b. Activation through writing in the corresponding object over a write request

There is an object described in the K-Matrix that stores the information for the
activated/deactivated halo LEDs. The object in question is number 104 (0x68).
Writing the corresponding bit-value into this object will lead to the same result as
described in a. the subindex 0 to 5 correspond with the buttons 1 – 6. The value
written in the corresponding byte is bit-coded similarly to the symbol activation
described in chapter 9.9.2.1.
 Writing an object is described in chapter 9.4.3.
Example data field for turning on the complete halo for button 2:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x68 0x01 0x0F 0x00 0x00 0x00 0x00

9.9.3.2 Choosing the active brightness setting for the halo LEDs
There are 3 predefined brightness settings available to choose from in the keypad. The K-
Matrix defines the object and which value stands for which setting. Subindex 0 to 5 stand for
the buttons 1 to 6.

Value Setting name Setting description

0x00 Setting 0 (even) Brightness for LEDs button wise

0x01 Setting 1 (even) Brightness for LEDs button wise

0x02 Setting 2
(individual)

Brightness for LEDs individually

www.eao.com 10.08.2022 | Seite 44

There are 2 ways to set the active brightness setting for the buttons.

1. Activation through Process data Prop A config message
This is described in 9.5.1. The corresponding message identifier is 0x12. The data bytes
1 through 6 are corresponding to buttons 1 through 6. This can be found in the K-Matrix
as well.
Example data field for setting the active brightness setting of all button halo LEDs to
setting 1:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x12 0x01 0x01 0x01 0x01 0x01 0x01 0x00

2. Activation through writing in the corresponding object with a write request

There is an object described in the K-Matrix that stores the information for the active
brightness setting. The object in question is number 100 (0x64). The subindex 0 through
5 correspond with the buttons 1 to 6. Writing an object is described in 9.4.3.
Example data field for setting the active brightness setting for button 2 to Setting 1:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x64 0x01 0x01 0x00 0x00 0x00 0x00

9.9.3.3 Changing the brightness setting for the Halo LED illumination
Each of the aforementioned brightness settings can be accessed through objects as described
in the K-Matrix.

Object Setting name Setting description

57 (0x39) Setting 0 (even) Brightness for LEDs button wise

58 (0x3A) Setting 1 (even) Brightness for LEDs button wise

61 (0x3D) Setting 2
(individual)

Brightness for LEDs individually

The subindex for Setting 0 and 1 are mapped from 0 to 5 corresponding to the buttons 1 to 6.
You can find the mapping for Setting 2 in the K-Matrix. Writing an object is described in chapter
9.4.3.

Example data field for setting the brightness in Setting 1 for button 2 to 50% (0x7D):

CAN-ID DLC Data

Byte 0
Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x3A 0x01 0x7D 0x00 0x00 0x00 0x00

The individual setting number 2 provides the possibility to adjust brightness values for each
LED alone. The LEDs are mapped to the sub index of the corresponding object (0x3D) as
described in the K-Matrix.

www.eao.com 10.08.2022 | Seite 45

Example data field for setting the brightness in Setting 2 for the top left LED of button 2 to 20%
(0x32):
CAN-ID DLC Data

Byte 0
Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x3D 0x0C 0x32 0x00 0x00 0x00 0x00

9.9.3.4 Choosing the temporal patterns for the Halo LED illumination
There are 5 predefined temporal patterns available for the halo LEDs.

Value Setting name Setting description

0x00 Steady LED always on

0x01 Flash slow LED flashing on and off with default value times

0x02 Flash fast LED flashing on and off with default value times faster than 0x01

0x03 Pulsate LEDs slowly turning off and on with default value times

0x04 Rotate 4 halo LEDs are slowly turning off one by one to visualize a
rotating ring

There are 2 ways to set the temporal pattern setting for the buttons.

1. Activation through Process data Prop A config message
This is described in 9.5.1. The corresponding message identifier is 0x14. The data bytes
1 through 6 are corresponding to buttons 1 through 6. This can be found in the K-Matrix
as well.
Example data field for setting the temporal pattern of all button halo LEDs to setting 1:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x14 0x01 0x01 0x01 0x01 0x01 0x01 0x00

2. Activation through writing in the corresponding object with a write request

There is an object described in the K-Matrix that stores the information for the temporal
pattern setting for the halo LEDs. The object in question is number 106 (0x6A). The
subindex 0 through 5 correspond with the buttons 1 to 6. Writing an object is described in
chapter 9.4.3.
Example data field for setting the temporal pattern for button 2 to Setting 1:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x6A 0x01 0x01 0x00 0x00 0x00 0x00

www.eao.com 10.08.2022 | Seite 46

9.9.3.5 Changing the global brightness for the Halo LED illumination
The global brightness setting is a setting that dims the LEDs above all other settings. So to get
realistic values in the aforementioned settings the global brightness needs to be set to 100%.
The brightness is coded in 250 steps from 0 (0%) to 250 (100%). The setting of global
brightness always affects all halo LEDs at once.

There are 2 ways to set the global brightness for the Halo LEDs.

1. Activation through Process data Prop A config message
This is described in 9.5.1. The corresponding message identifier is 0x10. The data byte
that accesses this information is Byte number 1.
Example data field for setting the global brightness of the Halo LEDs to 20%:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x10 0x32 0x00 0x00 0x00 0x00 0x00 0x00

2. Activation through writing in the corresponding object with a write request

There is an object described in the K-Matrix that stores the information for the global
brightness setting for the halo LEDs. The object in question is number 102 (0x66). Writing
an object is described in 9.4.3.
Example data field for setting the global brightness setting of the halos to 20%:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x66 0x00 0x32 0x00 0x00 0x00 0x00

9.9.3.6 Choosing the active colour setting for the Halo LED illumination
There are 4 predefined colour settings available to choose from in the keypad. The K-Matrix
defines the object and which value stands for which setting. Subindex 0 to 5 stand for the
buttons 1 to 6.

Value Setting name Setting description

0x00 Setting 0 (even) Colour for LEDs button wise

0x01 Setting 1 (even) Colour for LEDs button wise

0x02 Setting 2 (even) Colour for LEDs button wise

0x03 Setting 3 (individual) Colour for LEDs individually (mapping of LEDs see K-Matrix)

There are 2 ways to set the active colour setting.

3. Activation through Process data Prop A config message
This is described in 9.5.1. The corresponding message identifier is 0x11. The data bytes
1 through 6 are corresponding to buttons 1 through 6. This can be found in the K-Matrix
as well.

www.eao.com 10.08.2022 | Seite 47

Example data field for setting the active colour setting of all button halo LEDs to setting 1:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x11 0x01 0x01 0x01 0x01 0x01 0x01 0x00

1. Activation through writing in the corresponding object with a write request

There is an object described in the K-Matrix that stores the information for the active colour
setting. The object in question is number 109 (0x6D). The subindex 0 through 5
correspond with the buttons 1 to 6. Writing an object is described in 9.4.3.
Example data field for setting the active colour setting for button 2 to Setting 1:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x6D 0x01 0x01 0x00 0x00 0x00 0x00

9.9.3.7 Changing the colour setting for the Halo LED illumination
Each of the aforementioned colour settings can be accessed through objects as described in
the K-Matrix. By default the keypad has preset values in each setting. Each colour of the RGB
LEDs can be set with values from 0 to 250 to mix colours according to the user’s application.

Object Setting name Setting description

45 (0x2D) Colour Setting Halo
Red Even 0

Red colour channel of colour setting 0 Even

46 (0x2E) Colour Setting Halo
Green Even 0

Green colour channel of colour setting 0 Even

47 (0x2F) Colour Setting Halo
Blue Even 0

Blue colour channel of colour setting 0 Even

48 (0x30) Colour Setting Halo
Red Even 1

Red colour channel of colour setting 1 Even

49 (0x31) Colour Setting Halo
Green Even 1

Green colour channel of colour setting 1 Even

50 (0x32) Colour Setting Halo
Blue Even 1

Blue colour channel of colour setting 1 Even

51 (0x33) Colour Setting Halo
Red Even 2

Red colour channel of colour setting 2 Even

52 (0x34) Colour Setting Halo
Green Even 2

Green colour channel of colour setting 2 Even

53 (0x35) Colour Setting Halo
Blue Even 2

Blue colour channel of colour setting 2 Even

www.eao.com 10.08.2022 | Seite 48

Object Setting name Setting description

54 (0x36) Colour Setting Halo
Red Individual 3

Red colour channel of colour setting 3 Individual

55 (0x37) Colour Setting Halo
Green Individual 3

Green colour channel of colour setting 3 Individual

56 (0x38) Colour Setting Halo
Blue Individual 3

Blue colour channel of colour setting 3 Individual

The subindex for Setting 0, 1 and 2 are mapped from 0 to 5 corresponding to the buttons 1 to
6. You can find the mapping for Setting 2 in the K-Matrix. Writing an object is described in
chapter 9.4.3.
Example data field for setting the red channel in Setting 1 for button 2 to 50 (0x32):

CAN-ID DLC Data

Byte 0
Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x30 0x01 0x32 0x00 0x00 0x00 0x00

The individual setting number 3 provides the possibility to adjust colour values for each LED
alone. The LEDs are mapped to the subindex of the corresponding objects (0x36, 0x37 and
0x38) as described in the K-Matrix.
Example data field for setting the blue channel in Setting 3 for the top left LED of button 2 to
50(0x32):

CAN-ID DLC Data

Byte 0
Data
Byte 1

Data
Byte 2

Data
Byte 3

Byte 4 Byte 5 Byte 6 Byte 7

0x18EFFF00 8 0x04 0x38 0x0C 0x32 0x00 0x00 0x00 0x00

9.9.3.8 Adjusting the timings in flash modes
The 2 flashing modes described in chapter 9.9.2.4 and 9.9.3.4 can be adjusted by the user.
This means that the timings of how long the LED stays on and the period when it is turned on
can be adjusted. The timings affect flash modes of symbols and halos alike. For this there are
4 objects defined in the K-Matrix:

Object Object name Object description

41 (0x29) Flash_Slow_On_Time Timing for how long the LED is on in Flash mode slow

42 (0x2A) Flash_Slow_Period_ms Time after which the LED is turned on in Flash mode
slow

43 (0x2B) Flash_Fast_On_Time Timing for how long the LED is on in Flash mode fast

44 (0x2C) Flash_Fast_Period_ms Time after which the LED is turned on in Flash mode fast

www.eao.com 10.08.2022 | Seite 49

There are default values defined for each object in the K-Matrix. But each value can be
changed by hand. The values can be edited by means of a Prop A config message as
described in chapter 9.5.1.
Example data fields for setting the timing of the fast mode to 20ms LED on after each 50ms:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x18EFFF00 8 0x04 0x2B 0x00 0x14 0x00 0x00 0x00 0x00
0x18EFFF00 8 0x04 0x2C 0x00 0x32 0x00 0x00 0x00 0x00

 Changes between Software version 04.05.001 and 06.03.000
or newer

During further development it was necessary to implement some changes in the software.
The changes for J1939 communication are shown in the table below:

Type Index Change 04.05.001 06.03.000

Object 0x01 NVM group has changed EOL EOL
identification

Object 0x05 New NVM groups added (0xA5 =
Load Dump; 0xA6 = EOL
identification)

--- new groups

Object 0x06 New NVM groups added (0xA5 =
Load Dump; 0xA6 = EOL
identification)

--- New groups

Object 0x16 NVM group has changed EOL EOL
identification

Object 0x17 NVM group has changed EOL EOL
identification

Object 0x1As0 Adjust Undervoltage limit 8000 7000

Object 0x1As3 Adjust hysteresis time 80 500

Object 0x1Ds0-s3 New development object added --- New Object

Object 0x1Es0-s2 New development object added --- New Object

Object 0x1Fs0-
s12

New development object added --- New Object

Error
Codes

--- The error codes were reduced to the
essential groups

--- ---

Error
Codes

0x18FECA
(PGN)

Button indices changed B1 -> 0, B2 -> 2,
B3 -> 4, B4 -> 1,
B5 -> 3, B6 -> 5

B1 -> 0, B2 -> 1,
B3 -> 2, B4 -> 3,
B5 -> 4, B6 -> 5

www.eao.com 10.08.2022 | Seite 50

10. CANopen communication protocol
The most important document to understand the communication with the keypad is the K-
Matrix. It includes a description of all available objects, how to address them and how to save
them. It is the equivalent to the object dictionary. To work with the K-Matrix please note that
some objects have a at the side. Which means that the row can be expanded and more
information is then available.

This manual includes excerpts from the K-Matrix. All functions that the keypad has to offer can
be found in the K-Matrix. All addressable objects are also defined in the corresponding EDS
(electronical data sheet) file. To interface correctly with the keypad the use of the latest EDS
is mandatory.

 Composition of the CAN Identifier
The CAN-IDs are composed according to the CAN open standard which is defined in the official
CAN in Automation (CiA) Document CiA301 “CANopen application layer and communication
profile”.

The Identifier consists of 11 Bit. The first 7 Bits are the Node-ID which identifies the addressed
device. The other 4 Bits contain the function code which identifies the type of message is sent
and what it does.

The definitions of the function code can be found in the corresponding document CiA301.

 Standard communication parameters
The default Node-ID of the keypad is set to 0x0B (0d11) by default. It can be modified either
by using the LSS master commands or by a specific CAN message to the corresponding object
as described in 10.4.

The default baud rate of the Keypad is set to 250kbps. It can also be changed by means of
LSS master or a specific CAN message according to 10.4.

 Installation in a CAN-network
After connecting the keypad electronically to the network it signifies its status to the master by
sending a network management message according to CiA301. It is sent with the function code
0x700 + node ID. It contains 1 data byte with the content 0x00. After that the keyboard signals
its current status by means of a heartbeat. By default it will send a message with the ID
0x700+node ID with 1 databyte containing 0x7F which signals that the keypad is in pre-
operational state. The timing of the heartbeat can be adjusted according to the CANopen
standard CiA301.

Switching in between the NMT states is defined in the official CANopen documentation CiA301.
The following is an excerpt to visualize the different states.

www.eao.com 10.08.2022 | Seite 51

[source: CiA CANopen® application layer and general communication profile „CAN poster“]

Example of boot up sequence and setting the keypad into operational state right after boot-up
with default values as seen by the CAN master (only SDOs):

CAN-ID Rx/Tx DLC Data Byte 0 Data Byte 1 Description

0x70b Rx 1 0x00 - Boot-Up

0x70b Rx 1 0x7F - Heartbeat pre-operational

0x000 Tx 2 0x01 0x0b NMT command to set device with
node ID 0x0b to Operational state

0x70b Rx 1 0x05 - Heartbeat Operational

www.eao.com 10.08.2022 | Seite 52

Different access to objects is possible dependent on the NMT state the keypad is currently in.
The following table visualizes the possibilities,

Object
Operating modes

Initialisation Pre-Operational Operational Stopped

PDO X

SDO X X

SYNC X X

Emergency X X X

NMT X X X

Node Guard (Heart Beat) X X X

Boot-Up X

 SDO communication
Communication to the keypad is defined by the CANopen standard. All access can be realized
by sending and receiving Service Data objects (SDOs).

An SDO message is composed defined by CiA 301 like the following:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0xXXX +
Node ID 8

Command
specifier
(CS)

Index
LB

Index
HB

Subind
ex

LLB
(D0)

LHB
(D1)

HLB
(D2)

HHB
(D3)

Identifier:
̶ It is composed as described in 10.1. The function code of a SDO being received by the

keypad is 0x600 (client to server) and a response will be sent with the function code
0x580 (server to client).

Command specifier:
̶ The CS in data byte 0 specifies the transfer type of the message and the access type

(read or write) it is defined in detail by the CANopen standard.
̶ Excerpt of the standard with some commonly used CSs

www.eao.com 10.08.2022 | Seite 53

CS Description Data bytes Function

0x22 Download Request Not specified

Send data to the keypad
0x23 Download Request 4 (D0 – D3)

0x27 Download Request 3 (D0 – D2)

0x2B Download Request 2 (D0 – D1)

0x2F Download Request 1 (D0)

0x60 Download Response Not specified Response of the keypad that data was received

0x40 Upload Request Not specified Read data from the keypad

0x43 Upload Response 4 (D0 – D3)

Response of the keypad with the read data 0x47 Upload Response 3 (D0 – D2)

0x4B Upload Response 2 (D0 – D1)

0x4F Upload Response 1 (D0)

0x80 Abort Domain Transfer 4 (D0 – D3)
Keypad signifies transmission Error (data bytes
contain error code)

Index:
̶ This is the Index of the addressed object. Note that it is written least significant byte first

in data bytes 1 and 2.

Subindex:
̶ This describes the subindex of the addressed object. Whether or not an object does

have addressable subindexes which can be found in the K-Matrix and the corresponding
EDS file.

D0 – D3:
̶ The data that shall be written or read to or from the object is written in data bytes 4 to 7.

Again it is ordered least significant byte first.

Example of CAN message transfer requesting the data that is stored in Object 0x1000 (Device
Type) as seen by the CAN master:

11-Bit
Identifier DLC Rx/Tx

Data field

Byte 0 Byte 1 Byt 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 Tx 0x40 0x00 0x10 0x00 0x00 0x00 0x00 0x00

0x58B 8 Rx 0x43 0x00 0x10 0x00 0x91 0x01 0x03 0x00

 PDO communication
The CANopen protocol implemented in the keypad offers the communication with Process
data objects (PDO). This offers the possibility to customize the communication to the users’
needs and also the exchange of information over the CAN bus without protocol overhead. The
communication with PDOs is defined in the CANopen standard CiA301 and the possible PDOs
can be found in the K-Matrix. The keypad offers the use of TPDO1 to TPDO4 and RPDO1 to
RPDO7.

By default TPDO1 and RPDO1 are active and objects are mapped to the PDOs can be found
in the K-matrix. Default setting are defined in the K-matrix, too.

www.eao.com 10.08.2022 | Seite 54

10.5.1 PDO communication parameter
For each PDO there exists a communication parameter object in which the data how the PDO
will be transmitted or is addressed is stored.

It holds the COB-ID which is the address of the PDO with which it will be sent or received.

It also holds the Transmission type which is defined by the CANopen standard. In the case of
the keypad the Transmission Type is not changeable. The transmission type of every first PDO
is set to event driven, profile-specific. Every other transmission type is set to event-driven,
manufacturer-specific.

The inhibit time of the PDOs is optional it specifies the minimum time between transmissions
of the PDO. Once the PDO is transmitted no other transmissions of the PDO will take place in
the duration of the inhibit time. The Event Time specifies the time period in which the PDO is
transmitted. This affects TPDOs.

The Event Time is specified in multiples of milliseconds. Each time the PDO is transmitted the
event timer will be reset so that after it expires the PDO will be transmitted again. It will however
not be transmitted more often than the inhibit time specifies.

Each object that is allowed to be mapped to the TPDO can be transmitted periodically by the
TPDO. Some objects are able to trigger the transmission of the TPDO independently from the
event timer. This means that when one of the objects is mapped to the PDO the PDO will be
transmitted once the value of the object changes. Those objects are:

̶ 0x2014 (button error)
̶ 0x2015 (button stuck error)
̶ 0x2400 (RCC tilt X and Y)
̶ 0x2401 (RCC rotation)
̶ 0x2402 (RCC button pressed)
̶ 0x6000s1 (keypad button pressed)

10.5.2 Mapping of PDOs
It is possible for the user of the keypad to map objects to PDOs to use the PDO communication
for interfacing with the keypad. Which objects can be mapped to PDOs is defined by the EDS
file. For each PDO there are 2 objects of interest for mapping the parameters. The first object
are the communication parameters. In this object the COB-ID, the Transmission Type, the
inhibit Timer and the Event Timer are stored. The second object holds the information which
objects are mapped to the PDO. These are called PDO Mapping parameters. How to map
objects to a PDO will be described in the following.

The PDO mapping/ remapping is only possible in state pre-operational of
the keypad. If the keypad is set to operational state, PDO mapping cannot
be changed.

1. Deactivating the PDO in question
To deactivate a PDO the most significant Bit of the corresponding COB-ID of the PDO
must be set to 1. This is done in the corresponding PDO Communication Parameter object
Example message for disabling RPDO2:

www.eao.com 10.08.2022 | Seite 55

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x23 0x01 0x14 0x01 0x00 0x00 0x00 0x80

2. Setting thehighest sub-index supported to 0
Once the PDO is deactivated the count of how many objects the PDO holds must be set
to 0. This information is stored in the sub-index 0 of the PDO Mapping parameter object.
Example message for setting the highest sub-index supported for RPDO2 to 0:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x01 0x16 0x00 0x00 0x00 0x00 0x00

3. Mapping the desired objects to the PDO

After the first 2 steps are done it is possible to map up to 8 objects to the desired RPDO.
Please note that not all objects can be mapped to PDOs.
Example message for mapping the object 0x2207 (global brightness Halos) to the first
sub-index of RPDO2:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x23 0x01 0x16 0x01 0x08 0x00 0x07 0x22

Please note that Byte 4 holds the information of the expected data length of the mapped
object in bits. Byte 5 holds the sub-index of the mapped object. And Bytes 6 and 7 hold
the address of the mapped object written with LSB first.

4. Setting the highest sub-index supported to the count of mapped objects in the PDO
Sub-Index 0 of the PDO mapping parameter object must now be set to the count of objects
mapped to the PDO.
Example message for setting the count of objects in RPDO2 to 1.

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x01 0x16 0x00 0x01 0x00 0x00 0x00

5. Activating the PDO

To activate the PDO, the COB-ID must be written in the PDO Communication Parameter.
It is possible to set the COB-ID to a desired value. The range in which the COB-ID can be
set according to the CANopen standard is described in the document CiA301. Important
to notice is that the MSB of the COB-ID must be set to 0 to activate it.
Example message for setting the COB-ID of the RPDO2 to 0x300:

www.eao.com 10.08.2022 | Seite 56

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x23 0x01 0x14 0x01 0x00 0x03 0x00 0x00

After these steps are executed successfully the PDO (if it is a TPDO) will start to transmit
periodically or can be accessed (RPDO) by CAN messages with the given COB-ID.

Example of CAN message transfer writing a value into the mapped object in RPDO2 (as
defined in the examples see above) as seen by the CAN master:

11-Bit
Identifier DLC Rx/Tx

Data field

Byte 0

0x300 1 Tx 0xFA

10.5.3 Automatic COB-ID update
By default the COB-ID of the Keypad does not change its value if the Node-ID of the Keypad
is changed. If this functionality is needed the keypad offers this function though. To activate
this function the object 0x2005 needs to be changed. By default it is set to 0x00 which means
no automatic change of the COB-IDs. To activate the automatic COB-ID update the customer
will have to change the value of this object to 0x01.

For further information please refer to the current K-Matrix.

Please note that the changing of the COB-ID for the EMCY-message is not affected by this
object. The COB-ID of the EMCY-message will always be updated automatically.

www.eao.com 10.08.2022 | Seite 57

 Diagnostics, Error Codes
The keypad offers ways of diagnostics. For one there are the error handling objects according
to CiA301, which are namely object 0x1001 and 0x1003.

Object 0x1001 is the Error register. It will display the currently existing error. The values which
the object can display are defined by the CANopen standard and the interpretation can be
found in CiA301. In case that are more than one errors are active, the error register contains
the newest error. All error codes supported by keypad are defined in the K-matrix and shown
in the table below:

Error code Name Description

0x0071 Sleep objection by
application

Button is pressed state Prepare Sleep (see CiA-320 for more
information)

0x1xxx Generic error See CiA-301

0x3101 Overvoltage Input voltage exceeds 33 volts

0x3102 Undervoltage Input voltage falls below 8 volts

0x4201 Overtemperature
warning

Keypad temperature exceeds 100°C

0x4203 Overtemperature
error

Keypad temperature exceeds 125°C

0x4204 Temperature
sensor defect

Implausible temperature values are measured

0x5001 Button stuck Button is pressed longer than the time value defined in object
0x2101 (default value: 10s)

0x5002 Button pressed at
startup

One or more buttons are pressed during power-on-reset

0x7002 Button unstable Switching element bounces excessively; reason: switching
system worn out

0x7004 Button out of range Resistance of the switching system reach upper limit; reason:
switching system worn out

0x7006 Button crosstalk Button was detected as pressed although a other button
should be pressed; detection over cyclically detuning the
voltage divider of each button; reason: incoming moisture in
the keypad

0x7007 Button test low Cyclically detuning of voltage divider of each button returns
implausible values; reason: incoming moisture in the keypad,
switching system worn out

The other predefined error handling object is object 0x1003. This is the Pre-defined error field.
It holds up to 20 error codes of errors that have occurred in the past. Subindex 0 holds the
number of stored error messages. Subindexes 1 through 20 hold the error codes of the
occurred errors. They will be stored in the field in that way that the most current error is always
on top. So “older” errors will be moved to higher Subindexes if a new error is stored. To encode
the stored errors please see the K-Matrix. All possible error codes are described in the sheet
“error codes”. This error field can be reset by the user by writing a value of 0 to subindex 0 of

www.eao.com 10.08.2022 | Seite 58

the object. All stored error codes will be erased by this action. This object will be saved to non-
volatile memory automatically.

In addition to these standardized diagnostic handling tools, the keypad offers more
functionality. There is the button error object (0x2014) which displays possible errors for each
button. For more information please refer to the K-Matrix.

Next to the error register end the error field the keypad offers the possibility to send emergency
messages described in CIA301. Every time an error occurred an emergency message are
send over the CAN-bus. The structure of the message are shown in the following table:

11-Bit Identifier DLC
Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x80 + Node-ID 8
Error
Code
LSB

Error
Code
MSB

Error
Regist
er

Error
Data 0

Error
Data 1

Error
Data 2

Error
Data 3

Error
Data 4

The emergency message are only send once after an error occurred without a repeat. Two
examples (undervoltage error, occurred three times; button 2 stuck error; occurred two times)

11-Bit Identifier DLC
Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x8b 8 0x02 0x31 0x05 0x00 0x00 0x03 0x00 0x00

0x8b 8 0x01 0x50 0x21 0x00 0x00 0x02 0x00 0x00

The current temperature (0x2008) and the current voltage (0x2009) is also monitored by the
keypad and can be read from the corresponding objects. How the values can be interpreted
can be found in the K-Matrix.

 Save settings to Volatile and Non-Volatile memory
By default all changes written in the objects like lighting, Node Address and so on are stored
in volatile memory after writing. This means that with a voltage reset these changes will not
take any effect any more. The keypad has the ability to store settings in the non-volatile
memory to implement them fully available after module reset.

Saving into the non-volatile memory is done by writing into the object 0x1010. To save the
word “save” has to be written in Hex (0x65766173) to the corresponding sub-index which
corresponds with the save group of the desired object. Please refer to the K-Matrix to see
which sub-index belongs to which save group and which object is saved via which save group.

Example message for saving all data belonging to the CLS Save Group (e.g. Node Address).

11-Bit Identifier DLC
Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x23 0x10 0x10 0x06 0x73 0x61 0x76 0x65

Some changes (e.g. Node-ID) take effect after voltage reset of the keypad.

www.eao.com 10.08.2022 | Seite 59

 Custom Layer Settings
The baud rate and the Node-ID can be changed by the user by means of writing in the
corresponding sub-index of object 0x2004. The default values are as follows:

Object Default value

Baud rate (subindex 2) 0x03 (250 kbps)

Node-ID (subindex 1) 0x0B (Node-ID 11)

The objects with their respective description including the corresponding save/clear Block can
be found in the K-Matrix. To change the values the user has to first write 0xAA to sub-index 3
of Object 0x2004. This is the protection register to make sure no accidental change occurs.
Then the desired value can be written to the correct subindex. After the keypad accepted the
change the values have to be stored in non-volatile memory (see chapter 10.7). After the
values are stored correctly a power reset has to be performed. After that the keypad will be set
to the new settings and communication will be able only by using the changed values.

10.8.1 Manually configure the baud rate
As an example the following table shows the CANopen messages that are necessary for
changing the baud rate from 250 kbps (default value) to 500 kbps.

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x60B 8 0x2F 0x04 0x20 0x03 0xAA 0x00 0x00 0x00

0x58B 8 0x60 0x04 0x20 0x03 0x00 0x00 0x00 0x00

0x60B 8 0x2F 0x04 0x20 0x02 0x02 0x00 0x00 0x00

0x58B 8 0x60 0x04 0x20 0x02 0x00 0x00 0x00 0x00

0x60B 8 0x23 0x10 0x10 0x06 0x73 0x61 0x76 0x65

0x58B 8 0x60 0x10 0x10 0x06 0x00 0x00 0x00 0x00

First step is to unlock the baud rate object. The Node-ID and the baud rate can’t be written
before the value 0xAA is written to the protection object.

Second step for changing the baud rate is to send the new baud rate to the keypad. Data byte
4 represents the new baud rate (0x02 = 500kbps; 0x03 = 250kbps), data byte 1 the low byte
and data byte 2 the high byte of the index, data byte 3 the subindex and data byte 0 the
command (Download request; 1 byte). After the keypad receives a valid baud rate, the keypad
send a “Download Response”- message (Data byte 0 = 0x60).

Third step is to save the new baud rate to the non-volatile memory. The index of the store-
NVM-object is 0x1010 (data byte 1 and 2). The data byte 3 contains the save group.
Referenced to the CANopen K-Matrix of the keypad the baud rate uses the save group
“Custom Layer Settings”. The data bytes 4 – 8 contains the ASCII-Coded word “SAVE” (0x73;
0x61; 0x76; 0x65). After the write request the keypad sends a “Download Response”-
message.

4th step is to disconnect the keypad from the power supply and do a Power-On-Reset. After
that the keypad uses the new baud rate 500kbps for communication.

www.eao.com 10.08.2022 | Seite 60

10.8.2 Manually configure the Node-ID
As an example the following table shows the CANopen messages that are necessary for
changing the Node-ID from 0x0B (default value) to 0x0E.

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x60B 8 0x2F 0x04 0x20 0x03 0xAA 0x00 0x00 0x00

0x58B 8 0x60 0x04 0x20 0x03 0x00 0x00 0x00 0x00

0x60B 8 0x2F 0x04 0x20 0x01 0x0E 0x00 0x00 0x00

0x58B 8 0x60 0x04 0x20 0x01 0x00 0x00 0x00 0x00

0x60B 8 0x23 0x10 0x10 0x06 0x73 0x61 0x76 0x65

0x58B 8 0x60 0x10 0x10 0x06 0x00 0x00 0x00 0x00

First step is to unlock the Node-ID object. The Node-ID and the baud rate can’t be written
before the value 0xAA is written to the protection object.

Second step for changing the Node-ID is to send the new Node-ID to the keypad. Data byte 4
represents the new Node-ID (0x0E), data byte 1 the low byte and data byte 2 the high byte of
the index, data byte 3 the subindex and data byte 0 the command (Download request; 1 byte).
After the keypad receives a valid Node-ID, the keypad send a “Download Response”- message
(Data byte 0 = 0x60).

Third step is to save the new Node-ID to the non-volatile memory. The index of the store-NVM-
object is 0x1010 (data byte 1 and 2). The data byte 3 contains the save group. Referenced to
the CANopen K-Matrix of the keypad the Node-ID uses the save group “Custom Layer
Settings”. The data bytes 4 – 8 contains the ASCII-Coded word “SAVE” (0x73; 0x61; 0x76;
0x65). After the write request the keypad sends a “Download Response”- message.

4th step is to disconnect the keypad from the power supply and do a Power-On-Reset. After
that the keypad uses the new Node-ID 0x0E for communication.

 Basic functions

10.9.1 Pressed Key data
The information whether or not a button is pressed can be found in a defined object 0x6000 of
the keypad. The sub-index correspond with the buttons of the keypad. And the content
visualizes whether or not the button is pressed. If subindex 1 is 2, button 2 is pressed (Bitwise
coded).

For further information please refer to the corresponding K-Matrix.

10.9.1.1 Stuck Button Time

The Keypad provide the option to detect a continuous pressed button and send an error
message after a defined time. This so called stuck button detection will be controlled via the
stuck button detection time object (Object index: 0x2101s0).

www.eao.com 10.08.2022 | Seite 61

10.9.1.2 Reconfigure Stuck Button Time
The keypads with software version 04.05.001 have no possibility to reconfigure the stuck
button time. The values is set fixed to 10 seconds and can only be changed during production
process.

Keypads with software version 06.03.000 or newer provide the possibility to reconfigure the
stuck button time in field. The following table shows an example for reconfigure the stuck button
time to 3 seconds and save the new stuck button time:

CAN-ID DLC Data
Byte 0

Data
Byte 1

Data
Byte 2

Data
Byte 3

Data
Byte 4

Data
Byte 5

Data
Byte 6

Data
Byte 7

0x60B 8 0x2B 0x01 0x21 0x00 0xB8 0x0B 0x00 0x00

0x58B 8 0x60 0x01 0x21 0x00 0x00 0x00 0x00 0x00

0x60B 8 0x23 0x10 0x10 0x07 0x73 0x61 0x76 0x65

0x58B 8 0x60 0x10 0x10 0x07 0x00 0x00 0x00 0x00

Data byte 4 contains the low byte and data byte 5 the high byte of the 16-bit value stuck button
time.

10.9.2 Symbol Illumination
The symbols of the keypad are illuminated with white LEDs. In the following the corresponding
Objects will be described to turn them on and how to use all the functions the keypad has to
offer. All changes done in the object will be reset after voltage reset if not stored in non-volatile
memory according to chapter 10.7.

10.9.2.1 Activating Symbol Illumination

The LEDs for each button can be activated or deactivated exclusively. This is managed by
bitcoding the LED’s of the buttons. Writing a 1 to the desired Bit-position the LED will be turned
on, writing a 0 will turn it off. By adding the Bit-Values of the buttons together it is possible to
activate any desired pattern of the symbols.

Button 1 Button 2 Button 3

0b000001 (0x01) 0b000010 (0x02) 0b000100 (0x04)

Button 4 Button 5 Button 6

0b001000 (0x08) 0b010000 (0x10) 0b100000 (0x20)

There is an object described in the K-Matrix that stores the information for the
activated/deactivated symbol LEDs. The object in question is 0x6200 and the corresponding
subindex is S1. Writing the corresponding bit-value into this object will lead to activating the
Symbol LEDs with the configured brightness and pattern.

Example message for turning on the symbol LEDs of the first and third button:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x00 0x62 0x01 0x05 0x00 0x00 0x00

www.eao.com 10.08.2022 | Seite 62

10.9.2.2 Choosing the active brightness setting for the symbol LED’s
There are 3 predefined brightness settings available to choose from in the keypad. The K-
Matrix defines the object and which value stands for which setting. Subindex 1 to 6 stand for
the buttons 1 to 6.

Value Setting name Setting description

0x00 Setting 0 (even) Brightness for LEDs button wise

0x01 Setting 1 (even) Brightness for LEDs button wise

0x02 Setting 2 (individual) Brightness for LEDs individually (corresponds to Halo LEDs,
as the symbol is illuminated with only one LED)

There is an object described in the K-Matrix that stores the information for the active brightness
setting. The object in question is 0x2200. The subindex 1 through 6 correspond with the
buttons 1 to 6.

Example message for setting the active brightness setting for button 2 to Setting 1:

11-Bit Identifier DLC
Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x00 0x22 0x02 0x01 0x00 0x00 0x00

10.9.2.3 Changing the brightness setting for the symbol LED’s
Each of the aforementioned brightness settings can be accessed through objects as described
in the K-Matrix.

Object Setting name Setting description

0x211F Setting 0 (even) Brightness for LEDs button wise

0x2121 Setting 1 (even) Brightness for LEDs button wise

0x2123 Setting 2 (individual) Brightness for LEDs individually (corresponds to Halo LEDs,
as the symbol is illuminated with only one LED)

The subindex for Setting 0 and 1 are mapped from 1 to 6 corresponding to the buttons 1 to 6.
You can find the mapping for Setting 2 in the K-Matrix. The value for the lighting can be found
in the tab “value definition” in the K-Matrix.

Example message for setting the brightness in Setting 1 for button 2 to 50% (0x7D):

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x21 0x21 0x02 0x7D 0x00 0x00 0x00

www.eao.com 10.08.2022 | Seite 63

10.9.2.4 Changing the temporal patterns for the symbol LED Illumination
There are 4 predefined temporal patterns available for the symbol LEDs.

Value Setting name Setting description

0x00 Steady LED always on

0x01 Flash slow LED flashing on and off with default value times

0x02 Flash fast LED flashing on and off with default value times faster than 0x01

0x03 Pulsate LEDs slowly turning off and on with default value times

There is an object described in the K-Matrix that stores the information for the temporal pattern
setting for the symbol LEDs. The object in question is number 0x2204. The subindex 1 through
6 correspond with the buttons 1 to 6.

Example message for setting the temporal pattern for button 2 to Setting 1 (Flash slow):

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x04 0x22 0x02 0x01 0x00 0x00 0x00

10.9.2.5 Changing the global brightness for the symbol LED Illumination
The global brightness setting is a setting that is dimming the LEDs above all other settings. So
to get realistic values in the aforementioned settings the global brightness needs to be set to
100%. The value for the brightness can be found in the tab “value definition” in the K-Matrix.
The setting of global brightness always affects all Symbol LEDs at once.

There is an object described in the K-Matrix that stores the information for the global brightness
setting for the symbol LEDs. The object in question is number 0x2206.

Example message for setting the global brightness to 20%:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x06 0x22 0x00 0x32 0x00 0x00 0x00

10.9.3 Halo-Ring Illumination
The Halo-Rings of the keypad are illuminated with 4 RGB LEDs for each button. In the following
the corresponding objects will be described to turn them on and how to use all the functions
the keypad has to offer.

All changes done in the object will be reset after voltage reset if not stored in non-volatile
memory according to 10.7.

10.9.3.1 Activating Halo Ring Illumination

As there are 4 LEDs per button it is important to know that there are always 2 steps needed to
activate the halo LEDs. In one step it is set which of the 4 LEDs are supposed to be turned on.
And in the second step the halo for the button in question is activated.

www.eao.com 10.08.2022 | Seite 64

By default the halo LED’s are activated and can be switched on with object
0x6200 subindex 2.

1. First step: setting the LEDs that need to be turned on per button
There exists an object in the K-Matrix which stores the configuration of Halo LEDs per
button. The object in question is 0x2208. The subindexes 1 – 6 of this object correspond
with the buttons 1 – 6 of the keypad. The values of each subindex are bit coded for the 4
LEDs. The value written will either turn the LED on or off. 1 means on and 0 means off.
By adding the Bit-Values of the LEDs together it is possible to activate any desired pattern
of the LEDs.

They are coded as follows:

Example message for activating LED 0 and LED 1 of the halo-ring of button 2:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x08 0x22 0x02 0x03 0x00 0x00 0x00

2. Second step: activating the halo for the button in question

This is done by writing on the corresponding Lighting activation object. The corresponding
object is 0x6200 and the subindex is 2. This can be found in the K-Matrix as well. The
value written in the corresponding byte is bitcoded similarly to the symbol activation
described in chapter 10.9.2.1.

Example message for turning on the halo-ring of button 2:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x00 0x62 0x02 0x02 0x00 0x00 0x00

Buttons 1 - 6

Bit 3 Bit 0

Bit 2 Bit 1

www.eao.com 10.08.2022 | Seite 65

10.9.3.2 Choosing the active brightness setting for the Halo LED’s
There are 3 predefined brightness settings available to choose from in the keypad. The K-
Matrix defines the object and which value for the setting is stored.

Value Setting name Setting description

0x00 Setting 0 (even) Brightness for LEDs button wise

0x01 Setting 1 (even) Brightness for LEDs button wise

0x02 Setting 2 (individual) Brightness for LEDs individually

There are 2 ways to set the active brightness setting for the buttons.

There is an object described in the K-Matrix that stores the information for the active brightness
setting. The object in question is number 0x2201. The subindex 1 through 6 correspond with
the buttons 1 to 6.

Example message for setting the active brightness setting for button 2 to Setting 1:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x01 0x22 0x02 0x01 0x00 0x00 0x00

10.9.3.3 Changing the brightness setting for the Halo LED’s
Each of the aforementioned brightness settings can be accessed through objects as described
in the K-Matrix.

Object Setting name Setting description

0x2120 Setting 0 (even) Brightness for LEDs button wise

0x2122 Setting 1 (even) Brightness for LEDs button wise

0x2121 Setting 2 (individual) Brightness for LEDs individually

The subindex for setting 0 and 1 are mapped from 1 to 6 corresponding to the buttons 1 to 6.
You can find the mapping for Setting 2 in the K-Matrix.

Example message for setting the brightness in setting 1 for button 2 to 20%:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x22 0x21 0x02 0x32 0x00 0x00 0x00

The individual setting number 2 provides the possibility to adjust brightness values for each
LED alone. The LEDs are mapped to the sub index of the corresponding object as described
in the K-Matrix.

www.eao.com 10.08.2022 | Seite 66

Example message for setting the brightness in Setting 2 for the top left LED of button 2 to 20%
(0x32):

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x23 0x21 0x0D 0x32 0x00 0x00 0x00

10.9.3.4 Choosing the temporal patterns for the Halo LED’s for flashing modes
There are 5 predefined temporal patterns available for the halo LEDs.

Value Setting name Setting description

0x00 Steady LED always on

0x01 Flash slow LED flashing on and off with default value times

0x02 Flash fast LED flashing on and off with default value times faster than 0x01

0x03 Pulsate LEDs slowly turning off and on with default value times

0x04 Rotate 4 halo LEDs are slowly turning off one by one to visualize a
rotating ring

There is an object described in the K-Matrix that stores the information for the temporal pattern
setting for the halo LEDs. The object in question is 0x2205. The subindex 1 through 6
correspond with the buttons 1 to 6. Subindex 7 controls the RCC.

Example message for setting the temporal pattern for button 2 to Setting 1:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x05 0x22 0x02 0x01 0x00 0x00 0x00

10.9.3.5 Changing the global brightness for the Halo LED’s
The global brightness setting is a setting that is dimming the LEDs above all other settings. So
to get realistic values in the aforementioned settings the global brightness needs to be set to
100%. The value for the brightness can be found in the tab “value definition” in the K-Matrix.
The setting of global brightness always affects all halo LEDs at once.

There is an object described in the K-Matrix that stores the information for the global brightness
setting for the halo LEDs. The object in question is number 0x2207.

Example message for setting the global brightness setting to 20%:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x07 0x22 0x00 0x32 0x00 0x00 0x00

www.eao.com 10.08.2022 | Seite 67

10.9.3.6 Choosing the active colour setting for the Halo LED’s
There are 4 predefined colour settings available to choose from in the keypad. The K-Matrix
defines the object and which value stands for which setting. Subindex 1 to 6 correspond to the
buttons 1 to 6.

Value Setting name Setting description

0x00 Setting 0 (even) Colour for LEDs button wise

0x01 Setting 1 (even) Colour for LEDs button wise

0x02 Setting 2 (even) Colour for LEDs button wise

0x03 Setting 3 (individual) Colour for LEDs individually (mapping of LEDs see K-Matrix)

There is an object described in the K-Matrix that stores the information for the active colour
setting. The object in question is 0x2203. The subindex 1 through 5 correspond with the
buttons 1 to 6. Subindex 7 controls the RCC.

Example message for setting the active colour setting for button 2 to Setting 1:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x03 0x22 0x02 0x01 0x00 0x00 0x00

10.9.3.7 Changing the colour setting for the Halo LED’s
Each of the aforementioned colour settings can be accessed through objects as described in
the K-Matrix. By default the keypad has preset values in each setting. Each colour of the RGB
LEDs can be set with values from 0 to 250 to mix colours according to the user’s application.

Object Setting name Setting description

0x210D Colour Setting Halo Red
Even 0

Red colour channel of colour setting 0 Even

0x210E Colour Setting Halo
Green Even 0

Green colour channel of colour setting 0 Even

0x210F Colour Setting Halo
Blue Even 0

Blue colour channel of colour setting 0 Even

0x2113 Colour Setting Halo Red
Even 1

Red colour channel of colour setting 1 Even

0x2114 Colour Setting Halo
Green Even 1

Green colour channel of colour setting 1 Even

0x2115 Colour Setting Halo
Blue Even 1

Blue colour channel of colour setting 1 Even

0x2119 Colour Setting Halo Red
Even 2

Red colour channel of colour setting 2 Even

0x211A Colour Setting Halo
Green Even 2

Green colour channel of colour setting 2 Even

www.eao.com 10.08.2022 | Seite 68

0x211B Colour Setting Halo
Blue Even 2

Blue colour channel of colour setting 2 Even

0x211C Colour Setting Halo Red
Individual 3

Red colour channel of colour setting 3 Individual

0x211D Colour Setting Halo
Green Individual 3

Green colour channel of colour setting 3 Individual

0x211E Colour Setting Halo
Blue Individual 3

Blue colour channel of colour setting 3 Individual

The subindexes for setting 0, 1 and 2 are mapped from 1 to 6 corresponding to the buttons 1
to 6. Subindex 7 controls the RCC. You can find the mapping for setting 2 in the K-Matrix.

Example message for setting the red channel in setting 1 for button 2 to 50:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x13 0x21 0x02 0x32 0x00 0x00 0x00

The individual setting number 3 provides the possibility to adjust colour values for each LED
individually. The LEDs are mapped to the subindex of the corresponding objects as described
in the K-Matrix.

Example message for setting the blue channel in Setting 3 for the top left LED of button 2 to
50:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2F 0x1E 0x21 0x0D 0x32 0x00 0x00 0x00

10.9.3.8 Adjusting the timings in flash modes
The 2 flashing modes described in chapter 10.9.2.4 and 10.9.3.4 can be adjusted by the user.
This means that the timings of how long the LED stays on and the period when it is turned on
can be adjusted. The timings for these modes affect symbols and halos alike. For this there
are 4 objects defined in the K-Matrix:

Object Object name Object description

0x2104 Flash_Slow_On_Time Timing for how long the LED is on in Flash mode slow

0x2105 Flash_Slow_Period_ms Time after which the LED is turned on in Flash mode slow

0x2106 Flash_Fast_On_Time Timing for how long the LED is on in Flash mode fast

0x2107 Flash_Fast_Period_ms Time after which the LED is turned on in Flash mode fast

There are default values defined for each object in the K-Matrix. But each value can be
changed by hand.

www.eao.com 10.08.2022 | Seite 69

Example messages for setting the timing of the fast mode to 20ms LED on after each 50ms:

11-Bit
Identifier DLC

Data field

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x60B 8 0x2B 0x06 0x21 0x00 0x14 0x00 0x00 0x00

0x60B 8 0x2B 0x07 0x21 0x00 0x32 0x00 0x00 0x00

 Changes between Software version 04.05.001 and 06.05.001
or newer

During further development it was necessary to implement some changes in the software. The
changes for CANopen/CANopenSafety communication are shown in the table below:

Type Index Change 04.05.001 06.05.001

Object 0x1009s0 NVM block changed EAO-only EOL-ID

Object 0x1010s0 Increased supported subindex to 7 6 7

Object 0x1010s8 New sub-object was added --- EOL-ID

Object 0x1011s0 Increased supported subindex to 7 6 7

Object 0x1011s8 New sub-object was added --- EOL-ID

Object 0x2001s0 NVM block changed EAO-only EOL-ID

Object 0x2007s1 Adjust Undervoltage limit 8000 7000

Object 0x2007s4 Adjust hysteresis time 80 500

Object 0x2017s0 NVM block changed EAO-only EOL-ID

Object 0x2125s0-
s3

New object added --- New object

Object 0x2996s1-
s3

New development object added --- New object

Object 0x2997s0-
s3

New development object added --- New object

Object 0x2999s0-
sD

New development object added --- New object

Error
Codes

--- The error codes were reduced to the
essential groups

--- ---

Object 0x1001s0;
0x1003

Button indices changed B1 -> 0, B2 -> 2,
B3 -> 4, B4 -> 1,
B5 -> 3, B6 -> 5

B1 -> 0, B2 -> 1,
B3 -> 2, B4 -> 3,
B5 -> 4, B6 -> 5

www.eao.com 10.08.2022 | Seite 70

11. Special functions
The keypad offers some special functions which will be described in the following in a more
detailed way. Please make sure to refer to the corresponding K-Matrix as well, as these
descriptions will just be excerpts of the functionality.

 Sleep/Wakeup, Power Saving
To save power, the keypad offers a sleep mode. There is more than one way to set the keypad
into sleep-mode. It can be achieved either through a specific Sleep timer on CAN or by setting
an external hardware signal. Please refer to the K-Matrix to find the object in which the
Sleep/Wakeup source can be chosen and what value stands for which option. If the use of the
sleep mode is not wanted in an application, the user has to make sure that it is configured to
the 2-wire hardware interface mode and the wakeup-in pin is either left open or pulled reliably
to GND.

11.1.1 Sleep/Wakeup over CAN
This function is implemented according to CiA320 for CANopen, for J1939 the protocol is
manufacturer specific on the basis of the CANopen implementation and is specified in the
corresponding K-Matrix.

If the keypad is configured to sleep/ wakeup over CAN it will enter sleep mode if no CAN
message is received for 5 seconds. After that the keypad can be woken up by sending an
arbitrary CAN message (or keep alive message) or by pressing a button. Please refer to the
K-Matrix to see how each button can be configured to enable wakeup or disable it.

The wakeup out pin is disabled in this mode.

11.1.2 Sleep/Wakeup over 2 wire hardware interface
The keypad offers a 2-wire interface to enable Sleep mode. For this it offers a wakeup-in pin
with which the keypad can be set to sleep mode and can be woken up respectively. The pin
can draw between ~2mA and 7,5mA depending on the voltage on the wakeup-in pin.

This pin is read by the microcontroller analogical. After a reset of the keypad the pin needs to
be pulled high to activate the wakeup-in. If this does not happen the port will stay deactivated.
To activate the sleep mode a falling edge must be generated on the pin. The voltage must
switch from high to low. This can be done by switching to a low level or by turning the operating
port on the controlling device to high-z. The voltage must be held at low level to keep the
keypad in sleep mode. To wake the keypad back up the voltage at the wakeup pin must switch
from low to high and must then be held at high to keep the keypad awake.

11-1 circuit diagram Wake-up-in

www.eao.com 10.08.2022 | Seite 71

The 2nd wire is the wakeup output. This offers the functionality for the keypad to set other
devices into sleep mode or to wake them up. As long as the keypad is woken up the output is
set to high. Once the device enters sleep-mode the output is turned off and set to open.

11-2 circuit diagram wake-up-out

In the following the voltage levels to enter sleep mode and to wake up the keypad are
explained.

Max. input current wakeup in Ca. 8 mA (@ 32 V)

Max. output current wakeup out 200 mA

Voltage level low < 30 % * T30

Voltage level high > 70 % * T30

www.eao.com 10.08.2022 | Seite 72

11.1.3 Sleep/Wakeup summary

RKP state
State Awake State Sleep

Sleep/Wakeup Source Sleep/Wakeup
interface

Hardware two-wire
interface

Wakeup_Out Pin On = High [~ (T30 –
2,3V)]

OFF = Low [~ 0V]

Wakeup_In Pin VIN = > 70% * T30 VIN = < 30% * T30

CAN Rx Ignored (regarding sleep
state)

Other CAN messages are
received normally

Ignored

CAN Tx No CiA320 messages are
sent

No communication

Buttons Button state is interpreted
safely

Cyclic button read
keypad wakes with
button push

Button state is not
interpreted safely

CAN Bus

Wakeup_Out Pin “High-Z” (Low) “High-Z” (Low)

Wakeup_In Pin Ignored Ignored

CAN Rx If there are no “stay
awake” messages sent or
the command “go to
sleep” is sent the keypad
changes it’s state to sleep

With communication
on the CAN bus the
keypad changes its
state to awake

CAN Tx Responds to CiA320
messages

No communication

Buttons Button state is interpreted
safely

Cyclic button read
keypad wakes with
button push

Button state is not
interpreted safely

 Structure of lightning objects
For understanding how the lightning setup works, knowledge over the internal dependency
between the lightning objects is necessary. For the communication protocols J1939 and
CANopen/CANopenSafety the lightning setup uses the same topology. The objects which are
used for the lightning setup are listed in the following section.

www.eao.com 10.08.2022 | Seite 73

11.2.1 Depending objects

Index CANopen Index J1939 Object Name

Colour settings Halo

0x210D:1-7 0x2D:0-6 Colour Setting 0 Even Halo Red

0x210E:1-7 0x2E:0-6 Colour Setting 0 Even Halo Green

0x210F:1-7 0x2F:0-6 Colour Setting 0 Even Halo Blue

0x2113:1-7 0x30:0-6 Colour Setting 1 Even Halo Red

0x2114:1-7 0x31:0-6 Colour Setting 1 Even Halo Green

0x2115:1-7 0x32:0-6 Colour Setting 1 Even Halo Blue

0x2119:1-7 0x33:0-6 Colour Setting 2 Even Halo Red

0x211A:1-7 0x34:0-6 Colour Setting 2 Even Halo Green

0x211B:1-7 0x35:0-6 Colour Setting 2 Even Halo Blue

0x211C:1-31 0x36:0-30 Colour Setting 3 Indiv Halo Red

0x211D:1-31 0x37:0-30 Colour Setting 3 Indiv Halo Green

0x211E:1-31 0x38:0-30 Colour Setting 3 Indiv Halo Blue

Brightness settings Halo

0x2120:1-7 0x39:0-6 Brightness Setting 0 Even Halo

0x2122:1-7 0x3A:0-6 Brightness Setting 1 Even Halo

0x2206:0 0x66:0 Global Brightness Halos

Brightness settings Symbol

0x211F:1-6 0x3B:0-5 Brightness Setting 0 Even Symbol

0x2121:1-6 0x3C:0-6 Brightness Setting 1 Even Symbol

0x2207:0 0x67:0 Global Brightness Symbols

Brightness settings Halo + Symbol

0x2103:0 0x28:0 Minimum Brightness Value

0x2123:1-31 0x3D:0-30 Brightness Setting 2 Indiv

www.eao.com 10.08.2022 | Seite 74

Lightning management

0x2200:1-6 0x65:0-5 Active Brightness Setting Symbols

0x2201:1-7 0x64:0-4 Active Brightness Setting Halos

0x2203:1-7 0x6D:0-6 Active Colour Setting Halos

0x2104:0 0x29:0 Flash slow on time ms

0x2105:0 0x2A:0 Flash slow period ms

0x2106:0 0x2B:0 Flash fast on Time ms

0x2107:0 0x2C:0 Flash fast period ms

0x2204:1-6 0x6B:0-5 Temporal Pattern Symbols

0x2205:1-7 0x6A:0-6 Temporal Pattern Halos

0x2208:1-6 0x68:0-6 Activate Halo LEDs

0x6200:1 0x6C:0 Activate Symbol LEDs

0x6200:2 0x69:0 Activate Halo LEDs

11.2.2 Linking the objects
The interaction of the individual objects for colour and brightness adjustment can be described
most easily using the following formula:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑡𝑡𝑂𝑂𝑂𝑂𝐵𝐵𝑡𝑡𝐵𝐵 ∗
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑡𝑡𝑂𝑂𝑂𝑂𝐵𝐵𝑡𝑡𝐵𝐵 𝑋𝑋

250
∗
𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝑂𝑂𝐵𝐵 𝑆𝑆𝑡𝑡𝑂𝑂𝑂𝑂𝐵𝐵𝑡𝑡𝐵𝐵 𝑋𝑋

250

For the Halo LEDs. The same results for the brightness of the symbol LEDs:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑡𝑡𝑂𝑂𝑂𝑂𝐵𝐵𝑡𝑡𝐵𝐵 ∗
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑡𝑡𝑂𝑂𝑂𝑂𝐵𝐵𝑡𝑡𝐵𝐵 𝑋𝑋

250

The output brightness value resulting from the formulas is influenced by the following additional
objects and at last send to the LED driver.

Minimum brightness value:

This object determines the minimum brightness of the LEDs.

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡𝑁𝑁 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , if output brightness > minimum brightness value,

Else:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡𝑁𝑁 = 𝑀𝑀𝐵𝐵𝑡𝑡𝐵𝐵𝑀𝑀𝑂𝑂𝑀𝑀 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑉𝑉𝐺𝐺𝐺𝐺𝑂𝑂𝑡𝑡.

Temporal pattern symbols and temporal pattern values:

A special lighting function can be selected for the symbol and halo ring lighting using the two
objects temporal pattern symbols and halos. The following functions are available:

0 = continuous lightning:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡𝑁𝑁 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

1 = flash slow:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡𝑁𝑁 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , for 𝑇𝑇𝑂𝑂𝑂𝑂 ms,

www.eao.com 10.08.2022 | Seite 75

 (𝑇𝑇𝑂𝑂𝑂𝑂 = value from object 0x2104)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡𝑁𝑁 = 0 , for 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂 ms,

(𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂 = value from object 0x2105 – value from object 0x2104)

2 = flash fast:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡𝑁𝑁 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , for 𝑇𝑇𝑂𝑂𝑂𝑂 ms,

 (𝑇𝑇𝑂𝑂𝑂𝑂 = value from object 0x2106)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡𝑁𝑁 = 0 , for 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂 ms,

(𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂 = value from object 0x2107 – value from object 0x2106)

3 = pulsate:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡𝑁𝑁 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑂𝑂)

4 = rotate:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡𝑁𝑁 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑓𝑓𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑂𝑂)

Activate halo LED’s (Object 6200:2), Activate symbol LED’s (Object 6200:1), Activate halo
LED’s (Object 2208:1-6):

The PWM output can be activated via the objects if the bit belonging to the LED is set or
deleted in the objects (see K-Matrix CANopen). The difference between the objects 0x6200: 2
and 0x2208 is that with the object 0x2208: 1-6 each of the four individual RGB LEDs of the
halo rings can be activated or deactivated, whereas with object 0x6200: 2 the complete halo
ring is activated or deactivated . A haloring must first be activated via object 0x6200: 2 and
then individual LEDs must be deactivated via object 0x2208. Expressed in formula, this means:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡𝑁𝑁 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , if Bit in 0x6200:2 and 0x2208 is set,

Otherwise:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡𝑁𝑁 = 0.

The symbol lighting is activated in the same way as the halo rings via object 0x6200: 1.

Further objects with influence on the symbol and halo ring lighting are: active brightness setting
symbols (0x2200), active brightness setting halo (0x2201), active colour setting halo (0x2203).
The objects 0x2200, 0x2201, 0x2203 can be used to choose between the various settings for
the brightness and colour settings. You can choose between 4 memory positions for the colour
setting of the halo rings. You can choose between three storage positions for adjusting the
brightness of the halo rings and symbol illumination.

www.eao.com 10.08.2022 | Seite 76

 Communication timeout
This function is available in the J1939 version of the keypad only.

The keypad offers the functionality to signalize a communication timeout. If no “Prop A”-
message is received for a specified time the halo LEDs of the keypad will start to flash white.
Communication can be started again by sending “Prop A”-messages. Once in communication
timeout mode the LED settings will revert back to the off state. Other values that were stored
in volatile memory will not be lost. The LEDs will just be turned off.

The timer for when the timeout mode will be entered can be configured in the corresponding
lost communication timeout object (0xA3). The default value of this object are 2 seconds.
Please refer to the K-Matrix to see which values can be chosen.

12. CANopen-Safety communication protocol
̶ For detailed information, please have a look at the corresponding K-matrix.

13. Rotary Cursor controller
Next to the 6 button keypad 1707, a keypad with 2 buttons and a rotary cursor controller expand
the S09 series. The RCC keypad 1708 is set up on the hard- and software platform of the 6
button. The communication with the RCC keypad are totally the same as for the 6 button
keypad and the protocol J1939 or CANopen/CANopenSafety. The objects and messages that
are used especially for the RCC are described in the following sections.

www.eao.com 10.08.2022 | Seite 77

 Communication Objects

Object name Index Subindex Description Data Type

RCC Direction 0xB4 (J1939)

0x2400
(CANopen)

0x00 (J1939)

0x01
(CANopen)

RCC Direction X

+ = left

- = right

unsigned int 8 (J1939)

signed int 8 (CANopen)

0x01 (J1939)

0x02
(CANopen)

RCC Direction Y

+ = up

- = down

unsigned int 8 (J1939)

signed int 8 (CANopen)

RCC Rotation 0xB5 (J1939)

0x2401
(CANopen)

0x00 Rotation (notch) position of RCC

0x00: reserved

0x01 – 0x14: position

0x15 – 0xFC: reserved

0xFE: error

0xFF: not available

unsigned int 8

RCC Button
State

0xB6 (J1939)

0x2402
(CANopen)

0x00 Pressed state of the RCC

0x00: not pressed

0x01: pressed

0x02 – 0xFC: reserved

0xFE: error

0xFF: not available

unsigned int 8

RCC
Temperature

0xB7 (J1939)

0x2403
(CANopen)

0x00 (j1939)

0x01
(CANopen)

RCC Temperature Base unsigned int 8 (J1939)

signed int 16 (CANopen)

0x01 (J1939)

0x02
(CANopen)

RCC Temperature Handle unsigned int 8 (J1939)

signed int 16 (CANopen)

RCC Unique ID 0xB8 (J1939)

0x2405
(CANopen)

0x00 Unique ID Byte 0 (J1939)

Unique ID (CANopen)

unsigned int 8 (J1939)

unsigned int 32
(CANopen)

0x01 Unique ID Byte 1 unsigned int 8 (J1939)

0x02 Unique ID Byte 2 unsigned int 8 (J1939)

0x03 Unique ID Byte 3 unsigned int 8 (J1939)

0x04 Unique ID Byte 4 unsigned int 8 (J1939)

0x05 Unique ID Byte 5 unsigned int 8 (J1939)

RCC Version 0xB9 (J1939)

0x2404
(CANopen)

0x00 (J1939)

0x02
(CANopen)

RCC Hardware Version unsigned int 8

 0xBA (J1939)

0x2404
(CANopen)

0x00 (J1939)

0x01
(CANopen)

RCC Software Version unsigned int 8

www.eao.com 10.08.2022 | Seite 78

 Working with the RCC
The lightning functions of the RCC are equal to the normal buttons except two points:

̶ The RCC don’t have a symbol and no symbol illumination
̶ The halo-ring of the RCC are illuminated with only one led and not 4 as the buttons

Normally, the RCC are referenced with the index 7 for configure the lightning parameters. Due
to point one no index for RCC are implemented for the symbol lightning. Due to point two the
halo-ring of the RCC does not support the rotate function.

The object RCC direction provides the values of the joystick function of the RCC. The
interpretation of the values are different between the protocol J1939 and CANopen. A J1939
keypad sends the position of the joystick as an unsigned 8-bit value with an offset of 125 that
means 125 are the neutral position. The range of the value is ± 7 that for maximal positive
deflection 132 and for maximal negative deflection 118 are send. There is no difference
between the X and the Y direction.

A CANopen keypad sends the X and Y deflection as a signed 8-bit value with a value range
of ± 7. The maximal negative deflection are reached at -7, the maximal positive deflection
with +7.

The RCC keypad provide a proportional signal from the RCC and uses the whole value range
from -7 to +7 (or 118 to 132 for J1939 keypads) to represent the deflection. With these version
it is possible for the customer to define a specific switching threshold for every application.

The rotation position of the RCC can be read out by the RCC rotation object. The value are in
the range of 1 – 20 and are an absolute value of the RCC. After a Power-On-Reset of the RCC
the same value for RCC rotation are read out as before.

The remaining objects for RCC communication are described sufficient under point 13.1.
Additionally the information are documented in the K-matrix of the keypad.

14. Operation

 General information
After switching on the supply voltage, the keypad will boot automatically. If the keypad uses
J1939-protocol and the keypad receive no messages on the bus it will start blinking after 2
seconds. The operating temperature inside the keypad is continuously monitored. When a limit
temperature of 85°C is exceeded, measures to lower the internal operating temperature are
initiated automatically, starting with reducing the button illumination brightness.

A functional status of the application can be realised by a defined
colouring of the illumination (colour change) or by the illumination
segments of the halo ring illumination which are switched on and off
successively (e.g. flashing in a defined frequency, sequentiallight, etc.).
Combinations of colour and flashing, sequential etc. are also possible (e.g.
rotating in different colours).

www.eao.com 10.08.2022 | Seite 79

The button illumination of the keypad can be used for function and fault
indication of the application e.g. by flashing or colour change.

15. Cleaning
Cleaning with water and commercially available soft cloths is possible. Do not use solvents.
Please ensure that the distance between the nozzle and the product is not less than 0.5 m
when using a high pressure water jet.

Caution!

Cleaning with a high-pressure water jet is not permitted with a distance
nozzle to product less than 0.5m.

̶ Damage to the keypad
̶ Electrical shock due to leakage of the keypad

16. Optional accessories
Symbol inserts with customer-specific symbols or alternatively according to ISO 7000 can be
procured. Symbol inserts without symbols (blanks) can also be procured.

A insert tool for changing the symbol inserts are available (article number: 09-0A00.0001).

17. Liability for quality defects
The general function of the keypad has been tested at the factory before delivery. However, if
errors occur despite the careful quality control, they must be reported immediately to EAO or
the dealer.

The liability for quality defects is 12 months for the delivered products. Within this period of
time, faulty parts, except wear parts, will be repaired or replaced free of charge if the keypad
is returned to EAO, free of charge.

Damages caused by improper use or the use of force are excluded from the liability for quality
defects. Damages caused by repairs or modifications to the keypad are also excluded. EAO is
exclusively responsible for repairs to the keypad.

Further claims cannot be asserted. Claims arising from the purchase contract remain
unaffected.

EAO is not liable for consequential damages. The right to design changes, in particular in the
sense of product improvement, is reserved.

www.eao.com 10.08.2022 | Seite 80

18. Service, repair
In case of a defective keypad, cable or connector, please contact your dealer. In case of
malfunctions, the cause of which you cannot clearly identify, please send the defective keypad
to the following address:

EAO Automotive GmbH & Co. KG
Service
Richard-Wagner-Strasse 3
08209 Auerbach/ Vogtl.
Tel: +49 (0)3744/ 8264-0
Email: service.esa@eao.com
www.eao.com

19. Decommissioning, disposal
Disconnect the system from the power supply before the disconnection.

Do not pull at the cable when removing the connector.

Dispose of the device, components and accessories, packaging materials
and documentation in accordance with the country-specific waste treatment
and disposal regulations in the area of use.

20. Declaration of Conformity
The declaration of conformity certificate is available for download on the EAO-homepage
www.eao.com within the download section. The document valid for the product listed in this
manual is:

Series 09, Rugged CAN Keypads - CE-Certification - Compliancy of EAO Products,
from July,15, 2021

In case of further certificates are required, please ask your dealer.

mailto:service.esa@eao.com
http://www.eao.com/

	1. Safety warnings
	1.1 Intended use

	2. Proper environment
	3. General description
	4. Technical specification
	5. Scope of delivery
	6. Storage
	7. Mechanical installation/mounting
	7.1 Installation in a panel by means of retaining clamps (retaining clamp version)
	7.2 Installation in a panel with self-locking nuts (screw-in version)
	7.2.1 Mounting sequence

	7.3 Installation of the symbol inserts
	7.4 Use inside closed vehicles

	8. Electrical installation and interface operation
	8.1 Electrical installation
	8.1.1 Pinning

	8.2 Booting and resetting behaviour

	9. SAE J1939 communication protocol
	9.1 Composition of the CAN Identifier
	9.2 Keypad specific values
	9.3 Installation in a network
	9.4 Service Data – Proprietary A
	9.4.1 Read Data object Request
	9.4.2 Read data object reply OK
	9.4.3 Read data object reply NOK
	9.4.4 Write data object request
	9.4.5 Write data object reply OK
	9.4.6 Write data object reply NOK

	9.5 Process Data Proprietary A and B
	9.5.1 Process Data Proprietary A – Rx configuration messages
	9.5.2 Process Data Proprietary B – Tx process data

	9.6 Diagnostics
	9.6.1 Current Module Temperature
	9.6.2 Current voltage
	9.6.3 Error handling
	9.6.3.1 Active diagnostic trouble codes (DM1)
	9.6.3.2 Previously active diagnostic trouble codes (DM2)
	9.6.3.3 Diagnostic data clear/reset of previously active DTCs (DM3)

	9.7 Save settings to Volatile/Non-Volatile memory
	9.8 Custom Layer Settings
	9.8.1 Manually configure the Baudrate
	9.8.2 Manually configure the Node-ID

	9.9 Basic Functions
	9.9.1 Button press data
	9.9.1.1 Stuck Button Time
	9.9.1.2 Reconfigure Stuck Button Time

	9.9.2 Symbol Illumination
	9.9.2.1 Activating Symbol Illumination
	9.9.2.2 Choosing the active brightness setting for the symbol LEDs
	9.9.2.3 Changing the brightness setting for the symbol LEDs
	9.9.2.4 Changing the temporal patterns for the symbol LEDs (flash modes)
	9.9.2.5 Adjusting the timings in flash modes
	9.9.2.6 Changing the global brightness for the symbol LEDs

	9.9.3 Halo-Ring Illumination
	9.9.3.1 Activating Halo lighting
	9.9.3.2 Choosing the active brightness setting for the halo LEDs
	9.9.3.3 Changing the brightness setting for the Halo LED illumination
	9.9.3.4 Choosing the temporal patterns for the Halo LED illumination
	9.9.3.5 Changing the global brightness for the Halo LED illumination
	9.9.3.6 Choosing the active colour setting for the Halo LED illumination
	9.9.3.7 Changing the colour setting for the Halo LED illumination
	9.9.3.8 Adjusting the timings in flash modes

	9.10 Changes between Software version 04.05.001 and 06.03.000 or newer

	10. CANopen communication protocol
	10.1 Composition of the CAN Identifier
	10.2 Standard communication parameters
	10.3 Installation in a CAN-network
	10.4 SDO communication
	10.5 PDO communication
	10.5.1 PDO communication parameter
	10.5.2 Mapping of PDOs
	10.5.3 Automatic COB-ID update

	10.6 Diagnostics, Error Codes
	10.7 Save settings to Volatile and Non-Volatile memory
	10.8 Custom Layer Settings
	10.8.1 Manually configure the baud rate
	10.8.2 Manually configure the Node-ID

	10.9 Basic functions
	10.9.1 Pressed Key data
	10.9.1.1 Stuck Button Time
	10.9.1.2 Reconfigure Stuck Button Time

	10.9.2 Symbol Illumination
	10.9.2.1 Activating Symbol Illumination
	10.9.2.2 Choosing the active brightness setting for the symbol LED’s
	10.9.2.3 Changing the brightness setting for the symbol LED’s
	10.9.2.4 Changing the temporal patterns for the symbol LED Illumination
	10.9.2.5 Changing the global brightness for the symbol LED Illumination

	10.9.3 Halo-Ring Illumination
	10.9.3.1 Activating Halo Ring Illumination
	10.9.3.2 Choosing the active brightness setting for the Halo LED’s
	10.9.3.3 Changing the brightness setting for the Halo LED’s
	10.9.3.4 Choosing the temporal patterns for the Halo LED’s for flashing modes
	10.9.3.5 Changing the global brightness for the Halo LED’s
	10.9.3.6 Choosing the active colour setting for the Halo LED’s
	10.9.3.7 Changing the colour setting for the Halo LED’s
	10.9.3.8 Adjusting the timings in flash modes

	10.10 Changes between Software version 04.05.001 and 06.05.001 or newer

	11. Special functions
	11.1 Sleep/Wakeup, Power Saving
	11.1.1 Sleep/Wakeup over CAN
	11.1.2 Sleep/Wakeup over 2 wire hardware interface
	11.1.3 Sleep/Wakeup summary

	11.2 Structure of lightning objects
	11.2.1 Depending objects
	11.2.2 Linking the objects

	11.3 Communication timeout

	12. CANopen-Safety communication protocol
	13. Rotary Cursor controller
	13.1 Communication Objects
	13.2 Working with the RCC

	14. Operation
	14.1 General information

	15. Cleaning
	16. Optional accessories
	17. Liability for quality defects
	18. Service, repair
	19. Decommissioning, disposal
	20. Declaration of Conformity

